Dissimilarités de type sphérique et positionnement multidimensionnel normé

Farid Beninel

RAIRO - Operations Research - Recherche Opérationnelle (1999)

  • Volume: 33, Issue: 4, page 569-581
  • ISSN: 0399-0559

How to cite

top

Beninel, Farid. "Dissimilarités de type sphérique et positionnement multidimensionnel normé." RAIRO - Operations Research - Recherche Opérationnelle 33.4 (1999): 569-581. <http://eudml.org/doc/105205>.

@article{Beninel1999,
author = {Beninel, Farid},
journal = {RAIRO - Operations Research - Recherche Opérationnelle},
language = {fre},
number = {4},
pages = {569-581},
publisher = {EDP-Sciences},
title = {Dissimilarités de type sphérique et positionnement multidimensionnel normé},
url = {http://eudml.org/doc/105205},
volume = {33},
year = {1999},
}

TY - JOUR
AU - Beninel, Farid
TI - Dissimilarités de type sphérique et positionnement multidimensionnel normé
JO - RAIRO - Operations Research - Recherche Opérationnelle
PY - 1999
PB - EDP-Sciences
VL - 33
IS - 4
SP - 569
EP - 581
LA - fre
UR - http://eudml.org/doc/105205
ER -

References

top
  1. [1] M. BENAYADE, Distances of spherical type, Distancia 92-Rennes- France, S. Joly et G. Le Calvé, Eds., 1990. 
  2. [2] F. BENINEL, Problèmes de représentations sphériques des tableaux de dis similarité, Thèse de doctorat, Université Rennes I, 1987. 
  3. [3] L. M. BLUMENTHAL, Theory and Applications of Distance geometry, Clarendon Press, Oxford, 1953. Zbl0050.38502MR54981
  4. [4] J. BOUZITAT, F. FOURGEAUD et B. LENCLUD, Inverses généralisés de matrices, définitions et propriétés, Cahier du groupe de mathématiques économiques, Univ. Paris-I, 1980, 3. 
  5. [5] F. BUSING, J. COMMANDEURet W. J. HEISER, PROXSCAL: A Multidimensional Scaling Program for individual Differences Scaling with constraints, Rapport Technique, Department of Data Theory, Leiden University, Holland, 1996. 
  6. [6] F. CAILLIEZ, The analytical solution of the additive constant problem, Psychometrika, 1983, 48, n° 2, p. 305-308. Zbl0534.62079MR721286
  7. [7] F. CRITCHLEY, On certain linear mappings between inner-product and squared-distance matrices, Linear Algebra Appl., 1988, 105, p. 91-107. Zbl0644.15003MR945629
  8. [8] F. CRITCHLEY et B. FICHET, On (Super-)Spherical distance matrices and two results from Schoenberg, Linear Algebra and its applications, 1997, 251, p. 145-165. Zbl0870.15013MR1421270
  9. [9] J. DE LEUW et W. J. HEISER, Theory of multidimensional scaling, P. R. Krishnaiah et L. N. Kanal, Eds., Handbook of statistics, Vol. 2, Amsterdam: North-Holland company, 1982. Zbl0511.62076MR716709
  10. [10] C. ECKART et G. YOUNG, The approximation of one matrix by another of lower rank, Psychometrika, 1936, 1, p. 211-218. Zbl62.1075.02JFM62.1075.02
  11. [11] B. FICHET et G. LE CALVÉ, Structure géométrique des principaux indices de dissimilarité sur signes de présence-absence, Statist. Anal Données, 1984, 9, p. 11-44. Zbl0579.62045MR920345
  12. [12] A. A. GBEGAN, Une présentation globale de l'analyse factorielle des correspondances pour diverses métriques, Thèse de doctorat de l'université de Provence, 1984. 
  13. [13] J. C. GOWER, Euclidean distance geometry, Math. Scientist, 1982, 7, p.1-14. Zbl0492.51017MR642165
  14. [14] W. J. HEISER et J. DE LEUW, How to use SMACOF-I, Rapport de recherches, Departement of data theory, University of Leiden, Holland, 1977. 
  15. [15] S. JOLY et G. LE CALVÉ, Étude des puissances d'une distance, Statist. Anal Données, 1986, 11, p. 30-50. Zbl0636.62060MR920360
  16. [16] G. LE CALVÉ, Similarities functions, Edwards D., Raum N.E., Eds., Proceedings of COMPSTAT 88, Physica Verlag, Heidelberg, 1988, p. 341-347. Zbl0734.62003MR982314
  17. [17] J. C. LINGOES, Some boundary conditions for a monotone analysis of symetric matrices, Psychometrika, 1971, 36, p. 195-203. Zbl0222.15011MR364308
  18. [18] Tao. PHAM DINH, An. LE THI HOAI, Stability of lagrangian duality in D.C. optimization, Solution of Multidimensional scaling problem by D.C. algorithms, in "Local and Global Approaches to Nonconvex Optimization", Book Series "Nonconvex Optimization and its Applications", Kluwer Academic Publishers, 1999. Zbl0801.90093
  19. [19] C. R. RAO, Linear statistical inference and its applications, Wiley series in probability and mathematical statistics, 1973. Zbl0256.62002MR346957
  20. [20] I. J. SHOENBERG, Remarks to Maurice Frechet article "Sur la définition axiomatique d'une classe d'espaces distanciés vectoriellement applicable sur l'espace de Hubert", Ann. of Math., 1935, 38, p. 724-732. JFM61.0435.04
  21. [21] I. J. SHOENBERG, On certain metric spaces arising from Euclidean spaces by change of metric and their embedding in Hilbert space, Ann. of Math., 1937, 38, p. 787-793. Zbl0017.36101
  22. [22] B. VAN CUTSEM et al., Classification and Dissimilarity Analysis, Springer Verlag, Heidelberg, Lectures Notes in Statistics 93, 1994, p. 341-347. Zbl0801.00011MR1334330

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.