Colinéarité et instabilité numérique dans le modèle linéaire
RAIRO - Operations Research - Recherche Opérationnelle (2000)
- Volume: 34, Issue: 2, page 199-212
- ISSN: 0399-0559
Access Full Article
topHow to cite
topFoucart, Thierry. "Colinéarité et instabilité numérique dans le modèle linéaire." RAIRO - Operations Research - Recherche Opérationnelle 34.2 (2000): 199-212. <http://eudml.org/doc/105216>.
@article{Foucart2000,
author = {Foucart, Thierry},
journal = {RAIRO - Operations Research - Recherche Opérationnelle},
keywords = {linear multiple model; collinearity; multiple correlation coefficients; symmetric definite positive matrix; Cholesky's factorization},
language = {fre},
number = {2},
pages = {199-212},
publisher = {EDP-Sciences},
title = {Colinéarité et instabilité numérique dans le modèle linéaire},
url = {http://eudml.org/doc/105216},
volume = {34},
year = {2000},
}
TY - JOUR
AU - Foucart, Thierry
TI - Colinéarité et instabilité numérique dans le modèle linéaire
JO - RAIRO - Operations Research - Recherche Opérationnelle
PY - 2000
PB - EDP-Sciences
VL - 34
IS - 2
SP - 199
EP - 212
LA - fre
KW - linear multiple model; collinearity; multiple correlation coefficients; symmetric definite positive matrix; Cholesky's factorization
UR - http://eudml.org/doc/105216
ER -
References
top- 1. D.A. BELSLEY, E. KUH et R.E. WELSH, Regression diagnostics: Identifying influential data and sources of collinearity. Wiley, New York (1980). Zbl0479.62056MR576408
- 2. P.J. BROCKWELL et R.A. DAVIS, Time series: Theory and methods. Springer Series in Statistics (1998). Zbl0604.62083MR868859
- 3. P. CAZES, Protection de la régression par utilisation de contraintes linéaires et non linéaires. Rev. Statist. Appl. XXIII (1975) 37-57. MR415904
- 4. P.G. CIARLET, Introduction to Numerical Linear Algebra and Optimisation. Cambridge University Press, London (1989). Zbl0672.65001MR1015713
- 5. T. FOUCART, Transitivité du produit scalaire. Rev. Statist. Appl. XXXIX (1991) 57-68
- 6. T. FOUCART, Numerical Analysis of a Correlation Matrix. Statistics 29 (1997) 347-361. Zbl0874.62065MR1474945
- 7. T. FOUCART, Stabiliby of the inverse correlation matrix. Partial ridge regression J. Statist. Plann. Inference 77 (1999) 141-154. Zbl0943.62064MR1677813
- 8. D.M. HAWKINS et W.J.R. EPLETT, The Cholesky Factorization of the Inverse Correlation or Covariance Matrix in Multiple Regression. Technometrics 24 (1982) 191-198. Zbl0498.62057
- 9. I.S. HELLAND, Maximum Likelihood Regression on Relevant Components. J. R. Stat. Soc. Ser. B Stat Methodol. 54 (1992) 637-647. Zbl0774.62053MR1160488
- 10. A.E. HOERL et R.W. KENNARD, Ridge Regression: biased estimation for nonorthogonal problems. Technometrics 12 ( 1970a) 55-67. Zbl0202.17205
- 11. A.E. HOERL et R.W. KENNARD, Ridge Regression: Applications to nonorthogonal problems. Technometrics 12 ( 1970b) 69-82. Zbl0202.17206
- 12. I.T. JOLLIFFE, A note on the use of principal components in regression. Appl. Statist 31 (1982) 330-303.
- 13. T. NAES et I.S. HELLAND, Relevant Components in Regression. Scand. J. Statis. 20 (1993) 239-250. Zbl0788.62061
- 14. M. TENENHAUS, La régression PLS, théorie et pratique. Technip, Paris (1998). Zbl0923.62058
- 15. J. WHITTAKER, Graphical models in applied multivariate statistics. Wiley, New York (1990). Zbl1151.62053
- 16. S. WOLD, A. RUHE, H. WOLD et W.J. DUNN III, The collinearity problem in linear regression, The partial least squares (PLS) approached to generalized inverses. SIAM Sci. Stat. Comp. 5 (1984) 735-743. Zbl0545.62044
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.