Strict convex regularizations, proximal points and augmented lagrangians

Carlos Humes Jr.; Paulo José Da silva E Silva

RAIRO - Operations Research - Recherche Opérationnelle (2000)

  • Volume: 34, Issue: 3, page 283-303
  • ISSN: 0399-0559

How to cite

top

Humes Jr., Carlos, and Da silva E Silva, Paulo José. "Strict convex regularizations, proximal points and augmented lagrangians." RAIRO - Operations Research - Recherche Opérationnelle 34.3 (2000): 283-303. <http://eudml.org/doc/105220>.

@article{HumesJr2000,
author = {Humes Jr., Carlos, Da silva E Silva, Paulo José},
journal = {RAIRO - Operations Research - Recherche Opérationnelle},
language = {eng},
number = {3},
pages = {283-303},
publisher = {EDP-Sciences},
title = {Strict convex regularizations, proximal points and augmented lagrangians},
url = {http://eudml.org/doc/105220},
volume = {34},
year = {2000},
}

TY - JOUR
AU - Humes Jr., Carlos
AU - Da silva E Silva, Paulo José
TI - Strict convex regularizations, proximal points and augmented lagrangians
JO - RAIRO - Operations Research - Recherche Opérationnelle
PY - 2000
PB - EDP-Sciences
VL - 34
IS - 3
SP - 283
EP - 303
LA - eng
UR - http://eudml.org/doc/105220
ER -

References

top
  1. 1. A. AUSLENDER, R. COMINETTI and M. HADDOU, Asymptotic analysis for penalty and barrier methods in convex and linear programming. Math. Oper. Res. 22 (1997) 43-62. Zbl0872.90067MR1436573
  2. 2. D. BERTSEKAS, Constrained Optimization and Lagrange Multipliers. Academic Press, New York (1982). Zbl0572.90067MR690767
  3. 3. D. BERTSEKAS, Nonlinear Programming. Athena Scientific (1995). Zbl1015.90077
  4. 4. Y. CENSOR and J. ZENIOS, The proximal minimization algorithms with D-functions. J. Optim. Theory Appl. 73 (1992) 451-464. Zbl0794.90058MR1164803
  5. 5. J. GAUVIN, A necessary and sufficient condition to have bounded multipliers in nonconvex programming. Math. Programming 12 (1977) 136-138. Zbl0354.90075MR489903
  6. 6. A.M. GEOFFRION, Duality in non-linear programming, a simplified applications-oriented development. SIAM Rev. 13 (1971) 65-101. Zbl0232.90049MR280199
  7. 7. J.-B. HIRIART-URRUTY and C. LEMARÉCHAL, Convex analysis and minimization algorithms. II. Advanced theory and bundle methods. Springer-Verlag, Berlin (1993). Zbl0795.49002MR1295240
  8. 8. C. HUMES and P. SILVA, An inexact classical proximal point algorithm viewed as a descent method in the optimization case. Technical Report RT-MAC 99-10. Instituto de Matemática e Estatística - USP (1999). 
  9. 9. C. Jr. HUMES, Some comments on Lagrangian duality, optimality conditions and convexity. Investigación Oper. 2 (1991) 159-169. 
  10. 10. A. IUSEM, Métodos de Ponto Proximal em Otimização. Instituto de Matemática Pura e Aplicada - CNPq (1995). Book from the 20° Colóquio Brasileiro de Matemática. 
  11. 11. A. IUSEM and M. TEBOULLE, On the convergence rate of entropic proximal minimization algorithms. Comput. Appl. Math. 12 (1993) 153-168. Zbl0803.90101MR1268127
  12. 12. A. IUSEM, M. TEBOULLE and B. SVAITER, Entropy-like proximal methods in covex programming. Math. Oper. Res. 19 (1994) 790-814. Zbl0821.90092MR1304625
  13. 13. P.-J. LAURENT, Approximation et Optimisation. Collection Enseignement des Sciences. Hermann (1972). Zbl0238.90058MR467080
  14. 14. B. MARTINET, Régularisation d'inéquations variationelles par approximations successives. Rev. Française Inf. Rech. Oper. (1970) 154-159. Zbl0215.21103MR298899
  15. 15. B. MARTINET, Détermination approché d'un point fixe d'une application pseudo-contractante, C.R. Acad. Sci. Paris 274A (1972) 163-165. Zbl0226.47032MR290213
  16. 16. J. MOREAU, Proximité et dualité dans un espace hilbertien. Bull. Soc. Math. France 93 (1965) 273-299. Zbl0136.12101MR201952
  17. 17. R.T. ROCKAFELLAR, Extension of Fenchel's duality theorem for convex functions. Duke Math. J. 33 (1966) 81-89. Zbl0138.09301MR187062
  18. 18. R.T. ROCKAFELLAR, Convex Analysis. Princeton University Press (1970). Zbl0932.90001MR274683
  19. 19. R.T. ROCKAFELLAR, Augmented Lagrangians and applications of the proximal point algorithm in convex programming. Math. Oper. Res. 1 (1976) 97-116. Zbl0402.90076MR418919
  20. 20. R.T. ROCKAFELLAR, Monotone operators and the proximal point algorithm. SIAM J. Control Optim. 14 (1976) 887-898. Zbl0358.90053MR410483
  21. 21. R.T. ROCKAFELLAR and R.J.-B. WETS, Variational analysis [Fundamental Principles of Mathematical Sciences]. Springer-Verlag, Berlin, Grundlehren Math. Wiss. 317 (1998). Zbl0888.49001MR1491362
  22. 22. M. SOLODOV and B. SVAITER, A hybrid projection-proximal point algorithm. J. Convex Anal. 6 (1999). Zbl0961.90128MR1713951
  23. 23. M. SOLODOV and B. SVAITER, An inexact hybrid extragradient-proximal point algorithm using the enlargement of a maximal monotone operator. Set-Valued Analysis (to appear). Zbl0959.90038MR1756912
  24. 24. M. TEBOULLE, Entropic proximal methods with aplications to nonlinear programming. Math. Oper. Res. 17 (1992) 670-690. Zbl0766.90071MR1177730
  25. 25. J. TIND and L.A. WOLSEY, An elementary survey of general duality theory in mathematical programming. Math. Programming 20 (1981) 241-261. Zbl0467.90061MR632634

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.