Strict convex regularizations, proximal points and augmented lagrangians
Carlos Humes Jr.; Paulo José Da silva E Silva
RAIRO - Operations Research - Recherche Opérationnelle (2000)
- Volume: 34, Issue: 3, page 283-303
- ISSN: 0399-0559
Access Full Article
topHow to cite
topHumes Jr., Carlos, and Da silva E Silva, Paulo José. "Strict convex regularizations, proximal points and augmented lagrangians." RAIRO - Operations Research - Recherche Opérationnelle 34.3 (2000): 283-303. <http://eudml.org/doc/105220>.
@article{HumesJr2000,
author = {Humes Jr., Carlos, Da silva E Silva, Paulo José},
journal = {RAIRO - Operations Research - Recherche Opérationnelle},
language = {eng},
number = {3},
pages = {283-303},
publisher = {EDP-Sciences},
title = {Strict convex regularizations, proximal points and augmented lagrangians},
url = {http://eudml.org/doc/105220},
volume = {34},
year = {2000},
}
TY - JOUR
AU - Humes Jr., Carlos
AU - Da silva E Silva, Paulo José
TI - Strict convex regularizations, proximal points and augmented lagrangians
JO - RAIRO - Operations Research - Recherche Opérationnelle
PY - 2000
PB - EDP-Sciences
VL - 34
IS - 3
SP - 283
EP - 303
LA - eng
UR - http://eudml.org/doc/105220
ER -
References
top- 1. A. AUSLENDER, R. COMINETTI and M. HADDOU, Asymptotic analysis for penalty and barrier methods in convex and linear programming. Math. Oper. Res. 22 (1997) 43-62. Zbl0872.90067MR1436573
- 2. D. BERTSEKAS, Constrained Optimization and Lagrange Multipliers. Academic Press, New York (1982). Zbl0572.90067MR690767
- 3. D. BERTSEKAS, Nonlinear Programming. Athena Scientific (1995). Zbl1015.90077
- 4. Y. CENSOR and J. ZENIOS, The proximal minimization algorithms with D-functions. J. Optim. Theory Appl. 73 (1992) 451-464. Zbl0794.90058MR1164803
- 5. J. GAUVIN, A necessary and sufficient condition to have bounded multipliers in nonconvex programming. Math. Programming 12 (1977) 136-138. Zbl0354.90075MR489903
- 6. A.M. GEOFFRION, Duality in non-linear programming, a simplified applications-oriented development. SIAM Rev. 13 (1971) 65-101. Zbl0232.90049MR280199
- 7. J.-B. HIRIART-URRUTY and C. LEMARÉCHAL, Convex analysis and minimization algorithms. II. Advanced theory and bundle methods. Springer-Verlag, Berlin (1993). Zbl0795.49002MR1295240
- 8. C. HUMES and P. SILVA, An inexact classical proximal point algorithm viewed as a descent method in the optimization case. Technical Report RT-MAC 99-10. Instituto de Matemática e Estatística - USP (1999).
- 9. C. Jr. HUMES, Some comments on Lagrangian duality, optimality conditions and convexity. Investigación Oper. 2 (1991) 159-169.
- 10. A. IUSEM, Métodos de Ponto Proximal em Otimização. Instituto de Matemática Pura e Aplicada - CNPq (1995). Book from the 20° Colóquio Brasileiro de Matemática.
- 11. A. IUSEM and M. TEBOULLE, On the convergence rate of entropic proximal minimization algorithms. Comput. Appl. Math. 12 (1993) 153-168. Zbl0803.90101MR1268127
- 12. A. IUSEM, M. TEBOULLE and B. SVAITER, Entropy-like proximal methods in covex programming. Math. Oper. Res. 19 (1994) 790-814. Zbl0821.90092MR1304625
- 13. P.-J. LAURENT, Approximation et Optimisation. Collection Enseignement des Sciences. Hermann (1972). Zbl0238.90058MR467080
- 14. B. MARTINET, Régularisation d'inéquations variationelles par approximations successives. Rev. Française Inf. Rech. Oper. (1970) 154-159. Zbl0215.21103MR298899
- 15. B. MARTINET, Détermination approché d'un point fixe d'une application pseudo-contractante, C.R. Acad. Sci. Paris 274A (1972) 163-165. Zbl0226.47032MR290213
- 16. J. MOREAU, Proximité et dualité dans un espace hilbertien. Bull. Soc. Math. France 93 (1965) 273-299. Zbl0136.12101MR201952
- 17. R.T. ROCKAFELLAR, Extension of Fenchel's duality theorem for convex functions. Duke Math. J. 33 (1966) 81-89. Zbl0138.09301MR187062
- 18. R.T. ROCKAFELLAR, Convex Analysis. Princeton University Press (1970). Zbl0932.90001MR274683
- 19. R.T. ROCKAFELLAR, Augmented Lagrangians and applications of the proximal point algorithm in convex programming. Math. Oper. Res. 1 (1976) 97-116. Zbl0402.90076MR418919
- 20. R.T. ROCKAFELLAR, Monotone operators and the proximal point algorithm. SIAM J. Control Optim. 14 (1976) 887-898. Zbl0358.90053MR410483
- 21. R.T. ROCKAFELLAR and R.J.-B. WETS, Variational analysis [Fundamental Principles of Mathematical Sciences]. Springer-Verlag, Berlin, Grundlehren Math. Wiss. 317 (1998). Zbl0888.49001MR1491362
- 22. M. SOLODOV and B. SVAITER, A hybrid projection-proximal point algorithm. J. Convex Anal. 6 (1999). Zbl0961.90128MR1713951
- 23. M. SOLODOV and B. SVAITER, An inexact hybrid extragradient-proximal point algorithm using the enlargement of a maximal monotone operator. Set-Valued Analysis (to appear). Zbl0959.90038MR1756912
- 24. M. TEBOULLE, Entropic proximal methods with aplications to nonlinear programming. Math. Oper. Res. 17 (1992) 670-690. Zbl0766.90071MR1177730
- 25. J. TIND and L.A. WOLSEY, An elementary survey of general duality theory in mathematical programming. Math. Programming 20 (1981) 241-261. Zbl0467.90061MR632634
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.