On the central path for nonlinear semidefinite programming
L. M. Graña Drummond; Alfredo Noel Iusem; B. F. Svaiter
RAIRO - Operations Research - Recherche Opérationnelle (2000)
- Volume: 34, Issue: 3, page 331-345
- ISSN: 0399-0559
Access Full Article
topHow to cite
topGraña Drummond, L. M., Iusem, Alfredo Noel, and Svaiter, B. F.. "On the central path for nonlinear semidefinite programming." RAIRO - Operations Research - Recherche Opérationnelle 34.3 (2000): 331-345. <http://eudml.org/doc/105223>.
@article{GrañaDrummond2000,
author = {Graña Drummond, L. M., Iusem, Alfredo Noel, Svaiter, B. F.},
journal = {RAIRO - Operations Research - Recherche Opérationnelle},
keywords = {central path; nonlinear (convex) semidefinite programming},
language = {eng},
number = {3},
pages = {331-345},
publisher = {EDP-Sciences},
title = {On the central path for nonlinear semidefinite programming},
url = {http://eudml.org/doc/105223},
volume = {34},
year = {2000},
}
TY - JOUR
AU - Graña Drummond, L. M.
AU - Iusem, Alfredo Noel
AU - Svaiter, B. F.
TI - On the central path for nonlinear semidefinite programming
JO - RAIRO - Operations Research - Recherche Opérationnelle
PY - 2000
PB - EDP-Sciences
VL - 34
IS - 3
SP - 331
EP - 345
LA - eng
KW - central path; nonlinear (convex) semidefinite programming
UR - http://eudml.org/doc/105223
ER -
References
top- 1. F. ALIZADEH, J.-P. A. HAEBERLY and M. L. OVERTON, Complementarity and nondegeneracy in semidefinite programming. Math. Programming 77 (1997) 111-128. Zbl0890.90141MR1461378
- 2. D. BAYER and J. C. LAGARIAS, The non-linear geometry of linear programming. AT & Bell Laboratories, Murray Hill, NJ (1986), preprint. Zbl0671.90045
- 3. A. FIACCO and G. P. MCCORMIK, Nonlinear Programming: Sequential Unconstrained Techniques. Classics in Applied Mathematics, SIAM Publications, Philadelphia (1990). Zbl0713.90043MR1058438
- 4. D. GOLDFARB and K. SHEINBERG, Interior point trajectories in semidefinite programming (1996) preprint. Zbl0914.90215
- 5. L. M. GRAÑA DRUMMOND, Classical and generalized central paths with algorithmic applications in linear programming. Ph. D. Thesis, Instituto deMatemâtica Pura e Aplicada, Rio de Janeiro, Brazil (1997).
- 6. L. M. GRAÑA DRUMMOND and A. N. IUSEM, Welldefinedness and limiting behavior of the central path. Computational and Applied Mathematics (accepted). Zbl1119.90340
- 7. L. M. GRAÑA DRUMMOND and A. N. IUSEMOn the central path for semidefinite programming. Tecnhical Report ES-473/98, Programa de Engenharia de Sistemas e Computação, COPPE, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil (1998).
- 8. L. M. GRAÑA DRUMMOND and B. F. SVAITER, On well definedness of the central path. J. Optim. Theory Appl. 102 (1999) 223-237. Zbl0941.90061MR1706854
- 9. A. N. IUSEM, B. F. SVAITER and J. X. DA CRUZ NETO, Central paths, generalized proximal point methods and Cauchy trajectories in Riemann manifolds. SIAM J. Control Optim. 37 (1999) 566-588. Zbl0918.90113MR1670649
- 10. N. KARMARKAR, A new polynomial time algorithm for linear programming, Combinatorica 4 (1984) 373-395. Zbl0557.90065MR779900
- 11. L. G. KHACHIYAN, A polynomial algorithm for linear programming, Soviet Math. Dokl 20 (1979) 191-194. Zbl0409.90079
- 11. M. KOJIMA, S. MIZUNO and T. TOMA, Limiting behavior of trajectories by a continuation method for complementary problems. Math. Oper. Res. 15 (1990) 662-675. Zbl0719.90085MR1080471
- 13. M. KOJIMA, S. SHINDOH and S. HARA, Interior-point methods for the monotone semidefinite linear eomplementarity problem in symmetrie matrices. SIAM X Optim. 7 (1997) 86-125. Zbl0872.90098MR1430559
- 14. N. MEGIDDO, Pathways to the optimal set in linear programming, in Progress in Mathematical Programming-Interior Point and Related Methods, edited by N. Megiddo. Springer-Verlag, New York (1988) 131-158. Zbl0687.90056MR982720
- 15. N. MEGIDDO and M. SCHUB, Boundary behavior of interior point algorithms in linear programming. Math. Oper. Res. 14 (1989) 97-146. Zbl0675.90050MR984561
- 16. R. MONTEIRO and I. ADLER, Interior path following primal-dual algorithms. Part I: Linear Programming. Math. Programming 44 (1989) 27-41. Zbl0676.90038MR999721
- 17. R. MONTEIRO and T. TSUCHIYA, Limiting behavior of the derivatives of certain trajectories associated with a monotone horizontal linear complementarity problem. Math. Oper. Res. 21 (1996) 129-148. Zbl0867.90111MR1419903
- 18. R. MONTEIRO and F. ZHOU, On the existence and convergence of the central path for convex programming and some duality results, Comput Optim. Appl. 10 (1998) 51-77. Zbl0907.90222MR1609683
- 19. Y. NESTEROV, Primal-dual methods. Seminar at CORE, Université Catholique de Louvain (1994). Zbl1191.90038
- 20. M. L. OVERTON and R. S. WOMERSLEY, Second derivatives for optimization eigenvalues of symetric matrices. SIAM J. Matrix Anal. Appl 16 ( 1995697-718. Zbl0832.65036MR1337640
- 21. G. R. PARISSOTRésolution numérique approchée du problème de programation linéaire par application de la programation logarithmique. Revue Française Recherche Opérationelle 20 (1961) 227-259.
- 22. J. RENEGARA Polynomial-Time Algorithm Based on Newton's Method for Linear Programming. Math. Programming 40 (1988) 59-94. Zbl0654.90050MR923697
- 23. R. T. ROCKAFELLAR, Convex Analysis. Princeton University Press, New Jersey (1970). Zbl0932.90001MR274683
- 24. A. SHAPIRO, First and second order analysis of nonlinear semidefinite programs. Math. Programming 77 (1997) 301-320. Zbl0888.90127MR1461385
- 25. A. SHAPIRO and M. K. H. FAN, On eigenvalue optimization. SIAM J. Optim. 5 (1995) 552-569. Zbl0838.90115MR1344670
- 26. G. SONNEVEND, An analytic center for polyhedrons and new classes of global algorithms for linear (smooth, convex) programming. Springer-Verlag, New York, NY, Lecture Notes in Control and Inform. Sel 84 (1985) 866-876. Zbl0602.90106MR903521
- 27. L. VANDENBERGHE and S. BOYD, Positive-Definite Programming, Mathematical Programming: State of the Art, edited by J. R. Birge, K. G. M. Murty, University of Michigan, Ann Arbor, MI (1994) 276-308. Zbl0845.65023
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.