On the central path for nonlinear semidefinite programming

L. M. Graña Drummond; Alfredo Noel Iusem; B. F. Svaiter

RAIRO - Operations Research - Recherche Opérationnelle (2000)

  • Volume: 34, Issue: 3, page 331-345
  • ISSN: 0399-0559

How to cite

top

Graña Drummond, L. M., Iusem, Alfredo Noel, and Svaiter, B. F.. "On the central path for nonlinear semidefinite programming." RAIRO - Operations Research - Recherche Opérationnelle 34.3 (2000): 331-345. <http://eudml.org/doc/105223>.

@article{GrañaDrummond2000,
author = {Graña Drummond, L. M., Iusem, Alfredo Noel, Svaiter, B. F.},
journal = {RAIRO - Operations Research - Recherche Opérationnelle},
keywords = {central path; nonlinear (convex) semidefinite programming},
language = {eng},
number = {3},
pages = {331-345},
publisher = {EDP-Sciences},
title = {On the central path for nonlinear semidefinite programming},
url = {http://eudml.org/doc/105223},
volume = {34},
year = {2000},
}

TY - JOUR
AU - Graña Drummond, L. M.
AU - Iusem, Alfredo Noel
AU - Svaiter, B. F.
TI - On the central path for nonlinear semidefinite programming
JO - RAIRO - Operations Research - Recherche Opérationnelle
PY - 2000
PB - EDP-Sciences
VL - 34
IS - 3
SP - 331
EP - 345
LA - eng
KW - central path; nonlinear (convex) semidefinite programming
UR - http://eudml.org/doc/105223
ER -

References

top
  1. 1. F. ALIZADEH, J.-P. A. HAEBERLY and M. L. OVERTON, Complementarity and nondegeneracy in semidefinite programming. Math. Programming 77 (1997) 111-128. Zbl0890.90141MR1461378
  2. 2. D. BAYER and J. C. LAGARIAS, The non-linear geometry of linear programming. AT & Bell Laboratories, Murray Hill, NJ (1986), preprint. Zbl0671.90045
  3. 3. A. FIACCO and G. P. MCCORMIK, Nonlinear Programming: Sequential Unconstrained Techniques. Classics in Applied Mathematics, SIAM Publications, Philadelphia (1990). Zbl0713.90043MR1058438
  4. 4. D. GOLDFARB and K. SHEINBERG, Interior point trajectories in semidefinite programming (1996) preprint. Zbl0914.90215
  5. 5. L. M. GRAÑA DRUMMOND, Classical and generalized central paths with algorithmic applications in linear programming. Ph. D. Thesis, Instituto deMatemâtica Pura e Aplicada, Rio de Janeiro, Brazil (1997). 
  6. 6. L. M. GRAÑA DRUMMOND and A. N. IUSEM, Welldefinedness and limiting behavior of the central path. Computational and Applied Mathematics (accepted). Zbl1119.90340
  7. 7. L. M. GRAÑA DRUMMOND and A. N. IUSEMOn the central path for semidefinite programming. Tecnhical Report ES-473/98, Programa de Engenharia de Sistemas e Computação, COPPE, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil (1998). 
  8. 8. L. M. GRAÑA DRUMMOND and B. F. SVAITER, On well definedness of the central path. J. Optim. Theory Appl. 102 (1999) 223-237. Zbl0941.90061MR1706854
  9. 9. A. N. IUSEM, B. F. SVAITER and J. X. DA CRUZ NETO, Central paths, generalized proximal point methods and Cauchy trajectories in Riemann manifolds. SIAM J. Control Optim. 37 (1999) 566-588. Zbl0918.90113MR1670649
  10. 10. N. KARMARKAR, A new polynomial time algorithm for linear programming, Combinatorica 4 (1984) 373-395. Zbl0557.90065MR779900
  11. 11. L. G. KHACHIYAN, A polynomial algorithm for linear programming, Soviet Math. Dokl 20 (1979) 191-194. Zbl0409.90079
  12. 11. M. KOJIMA, S. MIZUNO and T. TOMA, Limiting behavior of trajectories by a continuation method for complementary problems. Math. Oper. Res. 15 (1990) 662-675. Zbl0719.90085MR1080471
  13. 13. M. KOJIMA, S. SHINDOH and S. HARA, Interior-point methods for the monotone semidefinite linear eomplementarity problem in symmetrie matrices. SIAM X Optim. 7 (1997) 86-125. Zbl0872.90098MR1430559
  14. 14. N. MEGIDDO, Pathways to the optimal set in linear programming, in Progress in Mathematical Programming-Interior Point and Related Methods, edited by N. Megiddo. Springer-Verlag, New York (1988) 131-158. Zbl0687.90056MR982720
  15. 15. N. MEGIDDO and M. SCHUB, Boundary behavior of interior point algorithms in linear programming. Math. Oper. Res. 14 (1989) 97-146. Zbl0675.90050MR984561
  16. 16. R. MONTEIRO and I. ADLER, Interior path following primal-dual algorithms. Part I: Linear Programming. Math. Programming 44 (1989) 27-41. Zbl0676.90038MR999721
  17. 17. R. MONTEIRO and T. TSUCHIYA, Limiting behavior of the derivatives of certain trajectories associated with a monotone horizontal linear complementarity problem. Math. Oper. Res. 21 (1996) 129-148. Zbl0867.90111MR1419903
  18. 18. R. MONTEIRO and F. ZHOU, On the existence and convergence of the central path for convex programming and some duality results, Comput Optim. Appl. 10 (1998) 51-77. Zbl0907.90222MR1609683
  19. 19. Y. NESTEROV, Primal-dual methods. Seminar at CORE, Université Catholique de Louvain (1994). Zbl1191.90038
  20. 20. M. L. OVERTON and R. S. WOMERSLEY, Second derivatives for optimization eigenvalues of symetric matrices. SIAM J. Matrix Anal. Appl 16 ( 1995697-718. Zbl0832.65036MR1337640
  21. 21. G. R. PARISSOTRésolution numérique approchée du problème de programation linéaire par application de la programation logarithmique. Revue Française Recherche Opérationelle 20 (1961) 227-259. 
  22. 22. J. RENEGARA Polynomial-Time Algorithm Based on Newton's Method for Linear Programming. Math. Programming 40 (1988) 59-94. Zbl0654.90050MR923697
  23. 23. R. T. ROCKAFELLAR, Convex Analysis. Princeton University Press, New Jersey (1970). Zbl0932.90001MR274683
  24. 24. A. SHAPIRO, First and second order analysis of nonlinear semidefinite programs. Math. Programming 77 (1997) 301-320. Zbl0888.90127MR1461385
  25. 25. A. SHAPIRO and M. K. H. FAN, On eigenvalue optimization. SIAM J. Optim. 5 (1995) 552-569. Zbl0838.90115MR1344670
  26. 26. G. SONNEVEND, An analytic center for polyhedrons and new classes of global algorithms for linear (smooth, convex) programming. Springer-Verlag, New York, NY, Lecture Notes in Control and Inform. Sel 84 (1985) 866-876. Zbl0602.90106MR903521
  27. 27. L. VANDENBERGHE and S. BOYD, Positive-Definite Programming, Mathematical Programming: State of the Art, edited by J. R. Birge, K. G. M. Murty, University of Michigan, Ann Arbor, MI (1994) 276-308. Zbl0845.65023

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.