G-Réseaux dans un environnement aléatoire
Jean-Michel Fourneau; Dominique Verchère
RAIRO - Operations Research - Recherche Opérationnelle (2000)
- Volume: 34, Issue: 4, page 427-448
- ISSN: 0399-0559
Access Full Article
topHow to cite
topFourneau, Jean-Michel, and Verchère, Dominique. "G-Réseaux dans un environnement aléatoire." RAIRO - Operations Research - Recherche Opérationnelle 34.4 (2000): 427-448. <http://eudml.org/doc/105229>.
@article{Fourneau2000,
author = {Fourneau, Jean-Michel, Verchère, Dominique},
journal = {RAIRO - Operations Research - Recherche Opérationnelle},
keywords = {queues; product form; random environment; generalized network},
language = {fre},
number = {4},
pages = {427-448},
publisher = {EDP-Sciences},
title = {G-Réseaux dans un environnement aléatoire},
url = {http://eudml.org/doc/105229},
volume = {34},
year = {2000},
}
TY - JOUR
AU - Fourneau, Jean-Michel
AU - Verchère, Dominique
TI - G-Réseaux dans un environnement aléatoire
JO - RAIRO - Operations Research - Recherche Opérationnelle
PY - 2000
PB - EDP-Sciences
VL - 34
IS - 4
SP - 427
EP - 448
LA - fre
KW - queues; product form; random environment; generalized network
UR - http://eudml.org/doc/105229
ER -
References
top- 1. F. BASKETT, K.M. CHANDY, R.R. MUNTZ et F.G. PALACIOS, Open, closed and mixed networks of queues with different classes of customers. J. ACM 22 (1975) 248-260. Zbl0313.68055MR365749
- 2. S. CHABRIDON, E. GELENBE, M. HERNANDEZ et A. LEBED, G-networks: A survey of results, applications ans solutions, in QMIPS Conference.
- 3. J.M. FOURNEAU, Computing the steady-state distribution of networks with positive and negative customers, in 13th IMACS World Congress on Computation and Applied Mathematics (1991).
- 4. E. GELENBE, Random neural networks with negative and positive signals and product form solution. Neural Computation 1 (1990) 502-510.
- 5. E. GELENBE, Product form queueing networks with negative and positive customers. J. AppL Probab. 28 (1991) 656-663. Zbl0741.60091MR1123837
- 6. E. GELENBE, G-networks with signals and batch removal. Probab. Engrg. Inform. Sci. 7 (1992) 335-342.
- 7. E. GELENBE, G-networks with triggered customer movement. J. AppL Probab. 30 (1993) 742-748. Zbl0781.60088MR1232750
- 8. E. GELENBE et R. SCHASSBERGER, Stability of G-networks. Probab. Engrg. Inform. Sci. 6 (1992) 271-276. Zbl1134.60396
- 9. E. GELENBE et G. PUJOLLE, Introduction aux réseaux de files d'attente. Eyrolles (1981). Zbl0547.60092
- 10. C.D. GARCIA et W.I. ZANGWILL, Pathways to solutions, fixed points et equilibria. Prentice-Hall (1981). Zbl0512.90070
- 11. P. GLYNN, E. GELENBE et K. SIGMANN, Queues with negative customers. J. Appl. Probab. 28 (1991) 245-250. Zbl0744.60110MR1090463
- 12. W. HENDERSON, Queueing networks with negative customers and negative queue lengths. J. Appl Probab. 30 ( 1993 ) 931-942. Zbl0787.60115MR1242022
- 13. M. HERNÁNDEZ et J.-M. FOURNEAU, Modelling defective parts in a flow using G-networks, in Second International Workshop on Performability Modelling of Computer and Communication Systems. Mont Saint-Michel, France (1993).
- 14. W. HENDERSON, B.S. NORTHCOTE et P.G. TAYLOR, Teletraffic modelling using queueing networks with signals, in ITC 13 (1991).
- 15. W. HENDERSON, B.S. NORTHCOTE et P.G. TAYLOR, State-dependent signalling in queueing networks. J. Appl. Probab. 26 (1994) 436-455. Zbl0804.60082MR1272721
- 16. R. HUNTER, Mathematical Technics of Applied Probabilities, Vol. 2. Academic Press (1983).
- 17. J. R. JACKSON, Networks of waiting lines. Oper. Res. 5 (1957) 518-52. MR93061
- 18. L. KLOUL, J.M. FOURNEAU et F. QUESSETTE, Multiple class G-networks with jumps back to zero, in Mascots'95. Durham, North Carolina, USA (1995). Zbl1016.68016
- 19. F. KELLY, Reversibility and stochastic networks. John Wiley & Sons (1979). Zbl0422.60001MR554920
- 20. L. MOKDAD, Méthodes et outils pour l'évaluation des performances des réseaux informatiques. Thèse de Doctorat, Université de Versailles Saint-Quentin-en-Yvelines (1997).
- 21. R. NELSON, Probability, stochastic processes and queueing theory, the mathematics of computer performance modeling. Springer Verlag (1995). Zbl0839.60002MR1340628
- 22. M.F. NEUTS, Matrix Geometrie Solutions in Stochastic Models, an Algorithmic Approach. John Hopkins University Press (1981). Zbl0469.60002MR618123
- 23. N.U. PRABHU et Y. ZHU, Markov-modulated queueing Systems. Adv. in Appl. Probab. 5 (1989) 215-246. Zbl0694.60087MR1032555
- 24. F. QUESSETTE, De nouvelle méthodes de résolution pour l'analyse quantitative des systèmes parallèles et des protocoles. Thèse de Doctorat, Université Paris-Sud, Orsay (1994).
- 25. H. TIJMS, Heuristics for the loss probability in finite buffer queues, in Conférence on Applied Probability in Engineering, Computer and Communication Sciences (1993).
- 26. D. VERCHÈRE, Méthodes analytiques d'évaluation de performance de systèmes informatiques. Thèse de Doctorat, Université Pierre et Marie Curie (1997).
- 27. Y. ZHU, Markovian queueing networks in a random environment. Oper. Res. Lett. (1994). Zbl0801.60080MR1284183
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.