G-Réseaux dans un environnement aléatoire

Jean-Michel Fourneau; Dominique Verchère

RAIRO - Operations Research - Recherche Opérationnelle (2000)

  • Volume: 34, Issue: 4, page 427-448
  • ISSN: 0399-0559

How to cite

top

Fourneau, Jean-Michel, and Verchère, Dominique. "G-Réseaux dans un environnement aléatoire." RAIRO - Operations Research - Recherche Opérationnelle 34.4 (2000): 427-448. <http://eudml.org/doc/105229>.

@article{Fourneau2000,
author = {Fourneau, Jean-Michel, Verchère, Dominique},
journal = {RAIRO - Operations Research - Recherche Opérationnelle},
keywords = {queues; product form; random environment; generalized network},
language = {fre},
number = {4},
pages = {427-448},
publisher = {EDP-Sciences},
title = {G-Réseaux dans un environnement aléatoire},
url = {http://eudml.org/doc/105229},
volume = {34},
year = {2000},
}

TY - JOUR
AU - Fourneau, Jean-Michel
AU - Verchère, Dominique
TI - G-Réseaux dans un environnement aléatoire
JO - RAIRO - Operations Research - Recherche Opérationnelle
PY - 2000
PB - EDP-Sciences
VL - 34
IS - 4
SP - 427
EP - 448
LA - fre
KW - queues; product form; random environment; generalized network
UR - http://eudml.org/doc/105229
ER -

References

top
  1. 1. F. BASKETT, K.M. CHANDY, R.R. MUNTZ et F.G. PALACIOS, Open, closed and mixed networks of queues with different classes of customers. J. ACM 22 (1975) 248-260. Zbl0313.68055MR365749
  2. 2. S. CHABRIDON, E. GELENBE, M. HERNANDEZ et A. LEBED, G-networks: A survey of results, applications ans solutions, in QMIPS Conference. 
  3. 3. J.M. FOURNEAU, Computing the steady-state distribution of networks with positive and negative customers, in 13th IMACS World Congress on Computation and Applied Mathematics (1991). 
  4. 4. E. GELENBE, Random neural networks with negative and positive signals and product form solution. Neural Computation 1 (1990) 502-510. 
  5. 5. E. GELENBE, Product form queueing networks with negative and positive customers. J. AppL Probab. 28 (1991) 656-663. Zbl0741.60091MR1123837
  6. 6. E. GELENBE, G-networks with signals and batch removal. Probab. Engrg. Inform. Sci. 7 (1992) 335-342. 
  7. 7. E. GELENBE, G-networks with triggered customer movement. J. AppL Probab. 30 (1993) 742-748. Zbl0781.60088MR1232750
  8. 8. E. GELENBE et R. SCHASSBERGER, Stability of G-networks. Probab. Engrg. Inform. Sci. 6 (1992) 271-276. Zbl1134.60396
  9. 9. E. GELENBE et G. PUJOLLE, Introduction aux réseaux de files d'attente. Eyrolles (1981). Zbl0547.60092
  10. 10. C.D. GARCIA et W.I. ZANGWILL, Pathways to solutions, fixed points et equilibria. Prentice-Hall (1981). Zbl0512.90070
  11. 11. P. GLYNN, E. GELENBE et K. SIGMANN, Queues with negative customers. J. Appl. Probab. 28 (1991) 245-250. Zbl0744.60110MR1090463
  12. 12. W. HENDERSON, Queueing networks with negative customers and negative queue lengths. J. Appl Probab. 30 ( 1993 ) 931-942. Zbl0787.60115MR1242022
  13. 13. M. HERNÁNDEZ et J.-M. FOURNEAU, Modelling defective parts in a flow using G-networks, in Second International Workshop on Performability Modelling of Computer and Communication Systems. Mont Saint-Michel, France (1993). 
  14. 14. W. HENDERSON, B.S. NORTHCOTE et P.G. TAYLOR, Teletraffic modelling using queueing networks with signals, in ITC 13 (1991). 
  15. 15. W. HENDERSON, B.S. NORTHCOTE et P.G. TAYLOR, State-dependent signalling in queueing networks. J. Appl. Probab. 26 (1994) 436-455. Zbl0804.60082MR1272721
  16. 16. R. HUNTER, Mathematical Technics of Applied Probabilities, Vol. 2. Academic Press (1983). 
  17. 17. J. R. JACKSON, Networks of waiting lines. Oper. Res. 5 (1957) 518-52. MR93061
  18. 18. L. KLOUL, J.M. FOURNEAU et F. QUESSETTE, Multiple class G-networks with jumps back to zero, in Mascots'95. Durham, North Carolina, USA (1995). Zbl1016.68016
  19. 19. F. KELLY, Reversibility and stochastic networks. John Wiley & Sons (1979). Zbl0422.60001MR554920
  20. 20. L. MOKDAD, Méthodes et outils pour l'évaluation des performances des réseaux informatiques. Thèse de Doctorat, Université de Versailles Saint-Quentin-en-Yvelines (1997). 
  21. 21. R. NELSON, Probability, stochastic processes and queueing theory, the mathematics of computer performance modeling. Springer Verlag (1995). Zbl0839.60002MR1340628
  22. 22. M.F. NEUTS, Matrix Geometrie Solutions in Stochastic Models, an Algorithmic Approach. John Hopkins University Press (1981). Zbl0469.60002MR618123
  23. 23. N.U. PRABHU et Y. ZHU, Markov-modulated queueing Systems. Adv. in Appl. Probab. 5 (1989) 215-246. Zbl0694.60087MR1032555
  24. 24. F. QUESSETTE, De nouvelle méthodes de résolution pour l'analyse quantitative des systèmes parallèles et des protocoles. Thèse de Doctorat, Université Paris-Sud, Orsay (1994). 
  25. 25. H. TIJMS, Heuristics for the loss probability in finite buffer queues, in Conférence on Applied Probability in Engineering, Computer and Communication Sciences (1993). 
  26. 26. D. VERCHÈRE, Méthodes analytiques d'évaluation de performance de systèmes informatiques. Thèse de Doctorat, Université Pierre et Marie Curie (1997). 
  27. 27. Y. ZHU, Markovian queueing networks in a random environment. Oper. Res. Lett. (1994). Zbl0801.60080MR1284183

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.