A modified algorithm for the strict feasibility problem
RAIRO - Operations Research - Recherche Opérationnelle (2001)
- Volume: 35, Issue: 4, page 395-399
- ISSN: 0399-0559
Access Full Article
topAbstract
topHow to cite
topBenterki, D., and Merikhi, B.. "A modified algorithm for the strict feasibility problem." RAIRO - Operations Research - Recherche Opérationnelle 35.4 (2001): 395-399. <http://eudml.org/doc/105253>.
@article{Benterki2001,
abstract = {In this note, we present a slight modification of an algorithm for the strict feasibility problem. This modification reduces the number of iterations.},
author = {Benterki, D., Merikhi, B.},
journal = {RAIRO - Operations Research - Recherche Opérationnelle},
keywords = {strict feasibility; interior point methods; Ye–Lustig algorithm; Ye-Lustig algorithm},
language = {eng},
number = {4},
pages = {395-399},
publisher = {EDP-Sciences},
title = {A modified algorithm for the strict feasibility problem},
url = {http://eudml.org/doc/105253},
volume = {35},
year = {2001},
}
TY - JOUR
AU - Benterki, D.
AU - Merikhi, B.
TI - A modified algorithm for the strict feasibility problem
JO - RAIRO - Operations Research - Recherche Opérationnelle
PY - 2001
PB - EDP-Sciences
VL - 35
IS - 4
SP - 395
EP - 399
AB - In this note, we present a slight modification of an algorithm for the strict feasibility problem. This modification reduces the number of iterations.
LA - eng
KW - strict feasibility; interior point methods; Ye–Lustig algorithm; Ye-Lustig algorithm
UR - http://eudml.org/doc/105253
ER -
References
top- [1] D. Benterki, Étude des performances de l’algorithme de Karmarkar pour la programmation linéaire. Thèse de Magister, Département de Mathématiques, Université de Annaba, Algérie (1992).
- [2] J.C. Culioli, Introduction à l’optimisation. Édition Marketing, Ellipses, Paris (1994).
- [3] I.J. Lustig, A pratical approach to Karmarkar’s algorithm. Technical report sol 85-5, Department of Operations Research Stanford University, Stanford, California.
- [4] A. Keraghel, Étude adaptative et comparative des principales variantes dans l’algorithme de Karmarkar, Thèse de Doctorat de mathématiques appliquées. Université Joseph Fourier, Grenoble, France (1989).
- [5] D.F. Shanno and R.E. Marsten, A reduced-gradient variant of Karmarkar’s algorithm and null-space projections. J. Optim. Theory Appl. 57 (1988) 383-397. Zbl0621.90047
- [6] S.J. Wright, Primal-dual interior point method. SIAM, Philadelphia, PA (1997). Zbl0863.65031MR1422257
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.