Agrégation des similarités : une solution oubliée

Michel Petitjean

RAIRO - Operations Research (2010)

  • Volume: 36, Issue: 1, page 101-108
  • ISSN: 0399-0559

Abstract

top
The signed similarities aggregation problem is solved with a boolean method derived from the Faure and Malgrange algorithm. The method is adequate either for integer similarities or real similarites, and multiple solutions can be enumerated. It needs a space amount equal to three times the input data size.

How to cite

top

Petitjean, Michel. "Agrégation des similarités : une solution oubliée." RAIRO - Operations Research 36.1 (2010): 101-108. <http://eudml.org/doc/105257>.

@article{Petitjean2010,
abstract = { The signed similarities aggregation problem is solved with a boolean method derived from the Faure and Malgrange algorithm. The method is adequate either for integer similarities or real similarites, and multiple solutions can be enumerated. It needs a space amount equal to three times the input data size. },
author = {Petitjean, Michel},
journal = {RAIRO - Operations Research},
keywords = {Agrégation des similarités; partition optimale; programmation linéaire en variables booléennes.; aggregation problem; boolean method},
language = {fre},
month = {3},
number = {1},
pages = {101-108},
publisher = {EDP Sciences},
title = {Agrégation des similarités : une solution oubliée},
url = {http://eudml.org/doc/105257},
volume = {36},
year = {2010},
}

TY - JOUR
AU - Petitjean, Michel
TI - Agrégation des similarités : une solution oubliée
JO - RAIRO - Operations Research
DA - 2010/3//
PB - EDP Sciences
VL - 36
IS - 1
SP - 101
EP - 108
AB - The signed similarities aggregation problem is solved with a boolean method derived from the Faure and Malgrange algorithm. The method is adequate either for integer similarities or real similarites, and multiple solutions can be enumerated. It needs a space amount equal to three times the input data size.
LA - fre
KW - Agrégation des similarités; partition optimale; programmation linéaire en variables booléennes.; aggregation problem; boolean method
UR - http://eudml.org/doc/105257
ER -

References

top
  1. J.S. deCani, A Branch and Bound Algorithm for Maximum Likelihood Paired Comparison Ranking. Biometrika59 (1972) 131-135.  
  2. F. Faure, La programmation linéaire appliquée, Collection ``Que sais-je ?'', No. 1776, Chap. 4. Presses Universitaires de France, Paris (1979).  
  3. M. Grötschel et Y. Wakabayashi, A Cutting Plane Algorithm for a Clustering Problem. Math. Prog. Ser. B45 (1989) 59-96.  
  4. I.C. Lerman, Classification et analyse ordinale des données, Chap. 1.3. Dunod Ed., Bordas, Paris (1981).  
  5. F. Marcotorchino, Agrégation des similarités en classification automatique, Ph.D. Thesis. Université Paris VI, France (1981).  
  6. J.-F. Marcotorchino et P. Michaud, Optimisation an analyse ordinale des données, Chap. X, Collection : Statistiques et décisions économiques. Masson, Paris (1979).  
  7. P. Michaud, Agrégation à la majorité II : analyse du résultat d'un vote. Centre Scientifique IBM France, Étude F.052, Paris (1985).  
  8. P. Michaud, Hommage à Condorcet (version intégrale pour le bicentenaire de l'essai de Condorcet). Centre Scientifique IBM France, Étude F.094, Paris (1985).  
  9. M. Minoux, Programmation mathématique. Théorie et algorithmes, Vol. 2, Chap. 7, Collection technique et scientifique des Télécommunications. CNET-ENST Eds., Bordas, Paris (1983).  
  10. M. Petitjean, Applications of the Radius-Diameter Diagram to the Classification of Topological and Geometrical Shapes of Chemical Compounds. J. Chem. Inf. Comput. Sci.32 (1992) 331-337.  
  11. Roseaux, Exercices et problèmes résolus de recherche opérationnelle, Tome 3, Chap. III. Masson, Paris (1985).  
  12. G. Saporta, Probabilités, analyse des données et statistique, Chap. 12, Sections 12.1 et 12.2. Technip, Paris (1990).  
  13. A. Schrijver, Theory of Linear and Integer Programming, Part IV. John Wiley and Sons, New-York (1986).  
  14. G. Sierksma, Linear and Integer Prpgramming. Theory and Practice. Marcel Dekker Inc., New-York, Monogr. and Textbooks in Pure Appl. Math.198 (1996).  
  15. G. Vernin et M. Petitjean, Application de la méthode de recherche de partition centrale sur variables pondérées à la classification des vins. Étude préliminaire. Rev. Fr. Oenol. (Cahier Scientifique)31 (1991) 7-15.  

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.