Generalized Characterization of the Convex Envelope of a Function
RAIRO - Operations Research (2010)
- Volume: 36, Issue: 1, page 95-100
- ISSN: 0399-0559
Access Full Article
topAbstract
topHow to cite
topKadhi, Fethi. "Generalized Characterization of the Convex Envelope of a Function." RAIRO - Operations Research 36.1 (2010): 95-100. <http://eudml.org/doc/105263>.
@article{Kadhi2010,
abstract = {
We investigate the minima of functionals of the form $$\int\_\{[a,b]\}g(\dot u(s))\{\rm d\}s$$
where g is strictly convex. The admissible functions $u:[a,b]\longrightarrow\mathbb\{R\}$ are not necessarily
convex and satisfy $u\leq f$ on [a,b], u(a)=f(a), u(b)=f(b), f is a fixed function on [a,b].
We show that the minimum is attained by $\bar f$, the convex envelope of f.
},
author = {Kadhi, Fethi},
journal = {RAIRO - Operations Research},
keywords = {Convex envelope; optimization; strict convexity; cost function.; cost function; minima of functionals; convex envelope},
language = {eng},
month = {3},
number = {1},
pages = {95-100},
publisher = {EDP Sciences},
title = {Generalized Characterization of the Convex Envelope of a Function},
url = {http://eudml.org/doc/105263},
volume = {36},
year = {2010},
}
TY - JOUR
AU - Kadhi, Fethi
TI - Generalized Characterization of the Convex Envelope of a Function
JO - RAIRO - Operations Research
DA - 2010/3//
PB - EDP Sciences
VL - 36
IS - 1
SP - 95
EP - 100
AB -
We investigate the minima of functionals of the form $$\int_{[a,b]}g(\dot u(s)){\rm d}s$$
where g is strictly convex. The admissible functions $u:[a,b]\longrightarrow\mathbb{R}$ are not necessarily
convex and satisfy $u\leq f$ on [a,b], u(a)=f(a), u(b)=f(b), f is a fixed function on [a,b].
We show that the minimum is attained by $\bar f$, the convex envelope of f.
LA - eng
KW - Convex envelope; optimization; strict convexity; cost function.; cost function; minima of functionals; convex envelope
UR - http://eudml.org/doc/105263
ER -
References
top- J. Benoist and J.B. Hiriart-Urruty, What Is the Subdifferential of the Closed Convex Hull of a Function? SIAM J. Math. Anal.27 (1994) 1661-1679.
- H. Brezis, Analyse Fonctionnelle: Théorie et Applications. Masson, Paris, France (1983).
- B. Dacorogna, Introduction au Calcul des Variations. Presses Polytechniques et Universitaires Romandes, Lausanne (1992).
- F. Kadhi and A. Trad, Characterization and Approximation of the Convex Envelope of a Function. J. Optim. Theory Appl.110 (2001) 457-466.
- T. Lachand-Robert and M.A. Peletier, Minimisation de Fonctionnelles dans un Ensemble de Fonctions Convexes. C. R. Acad. Sci. Paris Sér. I Math.325 (1997) 851-855.
- T. Rockafellar, Convex Analysis. Princeton University Press, Princeton, New Jersey (1970).
- W. Rudin, Real and Complex Analysis, Third Edition. McGraw Hill, New York (1987).
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.