Un ordonnancement dynamique de tâches stochastiques sur un seul processeur
RAIRO - Operations Research (2010)
- Volume: 36, Issue: 4, page 365-373
- ISSN: 0399-0559
Access Full Article
topAbstract
topHow to cite
topDerbala, Ali. "Un ordonnancement dynamique de tâches stochastiques sur un seul processeur." RAIRO - Operations Research 36.4 (2010): 365-373. <http://eudml.org/doc/105279>.
@article{Derbala2010,
abstract = {
We show that a particular dynamic priority given to jobs in a multitasks operating system of
computers is a deteriorating jobs or a delaying jobs scheduling. Under some assumptions we
also show that it is an index rule. To do this, we present the tool of bandit processes to
solve stochastic scheduling problems on a single machine.
},
author = {Derbala, Ali},
journal = {RAIRO - Operations Research},
keywords = {Indices de Gittins; ordonnancement stochastique; processus bandit; stratégies préemptive et non préemptive; bandit processes; Gittins indices},
language = {fre},
month = {3},
number = {4},
pages = {365-373},
publisher = {EDP Sciences},
title = {Un ordonnancement dynamique de tâches stochastiques sur un seul processeur},
url = {http://eudml.org/doc/105279},
volume = {36},
year = {2010},
}
TY - JOUR
AU - Derbala, Ali
TI - Un ordonnancement dynamique de tâches stochastiques sur un seul processeur
JO - RAIRO - Operations Research
DA - 2010/3//
PB - EDP Sciences
VL - 36
IS - 4
SP - 365
EP - 373
AB -
We show that a particular dynamic priority given to jobs in a multitasks operating system of
computers is a deteriorating jobs or a delaying jobs scheduling. Under some assumptions we
also show that it is an index rule. To do this, we present the tool of bandit processes to
solve stochastic scheduling problems on a single machine.
LA - fre
KW - Indices de Gittins; ordonnancement stochastique; processus bandit; stratégies préemptive et non préemptive; bandit processes; Gittins indices
UR - http://eudml.org/doc/105279
ER -
References
top- S. Browne et U. Yechiali, Scheduling deteriorating jobs on a single processor. Oper. Res.38 (1990) 495-498.
- J.C. Gittins et D.M. Jones, A dynamic index for the sequential Design of experiments, dans Colloquia Mathematica Janes Bolai, Vol. 9, European meeting of statisticians. Budapest, Hungary (1972) 241-266.
- J.C. Gittins et K.D. Glazebrook, On Bayesian models in stochastic scheduling. J. Appl. Probab.14 (1977) 556-565.
- J.C. Gittins, Bandit process and dynamic allocation indices. J. Roy. Statist. Soc. Sect. B41 (1979a) 148-177.
- J.C. Gittins et D.M. Jones, A dynamic allocation index for the discounted multiarmed bandit problem. Biometrika66 (1979b) 561-565.
- J.C. Gittins, Multi armed Bandit allocation indices. John Wiley & Sons (1989).
- K.D. Glazebrook, Stochastic scheduling, Ph.D. Thesis. Downing College, Cambridge (1976).
- K.D. Glazebrook, Myopic strategies for Bayesian models in stochastic scheduling. Oper. Res.19 (1982) 160-170.
- K.D. Glazebrook, Optimal strategies for families of alternative bandit processes. IEEE Trans. Automat. Control AC-28 (1983) 858-861.
- K.D. Glazebrook, Evaluating the effects of machine breakdowns in stochastic scheduling problems. Naval Res. Logist. Quarterly34 (1987) 319-335.
- C. Haro et C. Proust, Un ordonnancement équitable par priorités bornées, dans Colloque Méthodes et outils d'aide à la décision, MOAD'92. Béjaia, Algérie (1992) 46-49.
- P. Nash, Optimal allocation of resources between research projects, Ph.D. Thesis. Cambridge University (1973).
- P. Nash, A generalized bandit problem. J. Roy. Statist. Soc. Sect. B42 (1980) 165-169.
- D.R. Robinson, Algorithms for evaluating the dynamic allocation index. Oper. Res. Lett.1 (1982) 72-74.
- K.C. Sevcik, The use of service time distributions in scheduling, Ph.D. Dissertation. Comm. on Information Sciences, University of Chicago (1971).
- K.C. Sevcik, Scheduling for minimum total loss using service time distributions. J. Assoc. Comput. Mach.21 (1974) 66-75.
- W.E. Smith, Various optimizers for single state production. Naval Res. Logist. Quarterly3 (1956) 59-66.
- G. Weiss, Turnpike optimality of Smith's rule in parallel machines stochastic scheduling. Math. Oper. Res.17 (1992a) 255-270.
- G. Weiss, A tutorial in stochastic scheduling School of Isy. E. Georgia Tech, Atlanta, GA 30332 (1992b).
- P. Whittle, Multi-armed bandits and the Gittins index. J. Roy. Statist. Soc. Sect. B42 (1980) 143-149.
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.