Deterministic global optimization using interval constraint propagation techniques
RAIRO - Operations Research (2010)
- Volume: 38, Issue: 4, page 277-293
- ISSN: 0399-0559
Access Full Article
topAbstract
topHow to cite
topReferences
top- E. Fitan, F. Messine and B. Nogarede, The Electromagnetical Acuator Design Problem: A General and Rational Approach. IEEE T. Magn.40 (2004).
- E. Hansen, Global Optimization Using Interval Analysis. Marcel Dekker, Inc. 270 Madison Avenue, New York 10016 (1992).
- J.-C. Gilbert, G. Le Vey and J. Masse, La différentiation automatique de fonctions représentées par des programmes. Rapports de Recherche de l'INRIA- Rocquencourt, 1557, Programme 5, Traitement du Signal, Automatique et Productique (1991).
- L. Granvilliers, On the Combination of Interval Computating Solvers. Reliab. Comput.7 (2001) 467–483.
- L. Granvilliers and F. Benhamou, Progress in the Solving of a Circuit Design Problem. J. Global Optim.20 (2001) 155–168.
- L. Jaulin, Interval Constraint Propagation with Application to Bounded-Error Estimation. Automatica36 (2000) 1547–1562.
- R.B. Kearfott, Rigorous Global Search: Continuous Problems. Kluwer Academic Publishers, Dordrecht, Boston, London (1996).
- O. Lhomme, A. Gotlieb and M. Ruher, Dynamic Optimization of Interval Narrowing Algorithms. J. Logic Program.37 (1998).
- F. Messine, Méthodes d'optimisation globale basées sur l'analyse d'intervalle pour la résolution de problèmes avec contraintes. Ph.D. Thesis, Institut National Polytechnique de Toulouse (1997).
- F. Messine, Extension of Affine Arithmetic: Application to Global Optimization. J. Universal Comput. Sci.8 (2002) 992–1015.
- F. Messine and J.L. Lagouanelle, Enclosure Methods for Multivariate Differentiable Functions and Application to Global Optimization. J. Univ. Comput. Sci.4 (1998) 589–603.
- F. Messine, Méthodes de propagation de contraintes basées sur l'analyse d'intervalles pour l'optimisation globale déterministe. Rapport interne de recherche du Département Informatique de l'UPPA, R2I01-02, 18 pages (2002). Available on www.univ-pau.fr/~messine
- F. Messine, V. Monturet and B. Nogarede, An Interval Branch and Bound Method Dedicated to the Optimal Design of Piezoelectric Actuators. Mathematics and Computers in Science and Engineering, ISBN 960-8052-36-X, WSES Press (2001) 174–180.
- F. Messine, E. Fitan and B. Nogarede, The Inverse Problem Associated to the Optimal Design of Electromagnetic Actuators: Application to Rotating Machines with Magnetic Effects, in European Symposium on Numerical Methods in Electromagnetics, Proceedings JEE'02 (2002) 318–323.
- F. Messine, B. Nogarede and J.L. Lagouanelle, Optimal Design of Electromechanical Actuators: A New Method Based on Global Optimization. IEEE T. Magn.34 (1998) 299–307.
- B. Nogarede, A.D. Kone and M. Lajoie-Mazenc, Optimal Design of Permanent-Magnet Machines Using an Analytical Field Modeling. Electromotion2 (1995) 25–34.
- R.E. Moore, Interval Analysis. Prentice Hall, Inc. Englewood Cliffs, N.J. (1966).
- H. Ratschek and J. Rokne, New computer methods for global optimization. ELLIS HORWOOD LIMITED Market Cross House, Cooper Street, Chichester, West Sussex, PO19 1EB, England (1988).
- P. Van Henterbryck, L. Michel and Y. Deville, Numerica: a Modelling Language for Global Optimization. MIT Press, Cambridge Mass (1997).