Testing Cayley graph densities

Goulnara N. Arzhantseva[1]; Victor S. Guba[2]; Martin Lustig[3]; Jean-Philippe Préaux[4]

  • [1] Section de Mathématiques Université de Genève CP 64, 1211 Genève 4 SWITZERLAND
  • [2] Department of Mathematics Vologda State University 6 S. Orlov St., Vologda 160600 RUSSIA
  • [3] LATP, UMR CNRS 6632 Mathématiques Université d’Aix-Marseille III Avenue Escadrille Normandie-Niemen 13397 Marseille cédex 20 FRANCE
  • [4] Centre de recherche de l’Armée de l’air Ecole de l’air 13661 Salon-air FRANCE LATP, UMR CNRS 6632 Université de Provence 39 rue Joliot-Curie 13453 Marseille cédex 13 FRANCE

Annales mathématiques Blaise Pascal (2008)

  • Volume: 15, Issue: 2, page 233-286
  • ISSN: 1259-1734

Abstract

top
We present a computer-assisted analysis of combinatorial properties of the Cayley graphs of certain finitely generated groups: given a group with a finite set of generators, we study the density of the corresponding Cayley graph, that is, the least upper bound for the average vertex degree (= number of adjacent edges) of any finite subgraph. It is known that an m -generated group is amenable if and only if the density of the corresponding Cayley graph equals to 2 m . We test amenable and non-amenable groups, and also groups for which amenability is unknown. In the latter class we focus on Richard Thompson’s group F .

How to cite

top

Arzhantseva, Goulnara N., et al. "Testing Cayley graph densities." Annales mathématiques Blaise Pascal 15.2 (2008): 233-286. <http://eudml.org/doc/10562>.

@article{Arzhantseva2008,
abstract = {We present a computer-assisted analysis of combinatorial properties of the Cayley graphs of certain finitely generated groups: given a group with a finite set of generators, we study the density of the corresponding Cayley graph, that is, the least upper bound for the average vertex degree (= number of adjacent edges) of any finite subgraph. It is known that an $m$-generated group is amenable if and only if the density of the corresponding Cayley graph equals to $2m$. We test amenable and non-amenable groups, and also groups for which amenability is unknown. In the latter class we focus on Richard Thompson’s group $F$.},
affiliation = {Section de Mathématiques Université de Genève CP 64, 1211 Genève 4 SWITZERLAND; Department of Mathematics Vologda State University 6 S. Orlov St., Vologda 160600 RUSSIA; LATP, UMR CNRS 6632 Mathématiques Université d’Aix-Marseille III Avenue Escadrille Normandie-Niemen 13397 Marseille cédex 20 FRANCE; Centre de recherche de l’Armée de l’air Ecole de l’air 13661 Salon-air FRANCE LATP, UMR CNRS 6632 Université de Provence 39 rue Joliot-Curie 13453 Marseille cédex 13 FRANCE},
author = {Arzhantseva, Goulnara N., Guba, Victor S., Lustig, Martin, Préaux, Jean-Philippe},
journal = {Annales mathématiques Blaise Pascal},
keywords = {Amenability; Thompson’s group $F$; computer-assisted analysis; Cayley graphs; finitely generated groups; amenability; Thompson group ; computer-assisted group theory},
language = {eng},
month = {7},
number = {2},
pages = {233-286},
publisher = {Annales mathématiques Blaise Pascal},
title = {Testing Cayley graph densities},
url = {http://eudml.org/doc/10562},
volume = {15},
year = {2008},
}

TY - JOUR
AU - Arzhantseva, Goulnara N.
AU - Guba, Victor S.
AU - Lustig, Martin
AU - Préaux, Jean-Philippe
TI - Testing Cayley graph densities
JO - Annales mathématiques Blaise Pascal
DA - 2008/7//
PB - Annales mathématiques Blaise Pascal
VL - 15
IS - 2
SP - 233
EP - 286
AB - We present a computer-assisted analysis of combinatorial properties of the Cayley graphs of certain finitely generated groups: given a group with a finite set of generators, we study the density of the corresponding Cayley graph, that is, the least upper bound for the average vertex degree (= number of adjacent edges) of any finite subgraph. It is known that an $m$-generated group is amenable if and only if the density of the corresponding Cayley graph equals to $2m$. We test amenable and non-amenable groups, and also groups for which amenability is unknown. In the latter class we focus on Richard Thompson’s group $F$.
LA - eng
KW - Amenability; Thompson’s group $F$; computer-assisted analysis; Cayley graphs; finitely generated groups; amenability; Thompson group ; computer-assisted group theory
UR - http://eudml.org/doc/10562
ER -

References

top
  1. J. M. Belk, K. S. Brown, Forest diagrams for elements of Thompson’s group F , Internat. J. Algebra Comput. 15 (5-6) (2005), 815-850 Zbl1163.20310
  2. J. W. Cannon, W. J. Floyd, W. R. Parry, Introductory notes on Richard Thompson’s groups, L’Enseignement Mathématique 42 (2) (1996), 215-256 Zbl0880.20027
  3. T. Ceccherini-Silberstein, R. Grigorchuk, P. de la Harpe, Amenability and paradoxal decompositions for pseudogroups and for discrete metric spaces, Proc. Steklov Inst. Math. 224 (1) (1999), 57-97 Zbl0968.43002MR1721355
  4. V. S. Guba, On the properties of the Cayley graph of Richard Thompson’s group F , Internat. J. Algebra Comput. 14 (5-6) (2004), 677-702 Zbl0965.20025MR1786869
  5. P. de la Harpe, Topics in geometric group theory, (2000), University of Chicago Press, Chicago, IL Zbl1088.20021
  6. R.S. Lyndon, P.E. Schupp, Combinatorial group theory, (2001), Springer-Verlag, Berlin Zbl0997.20037MR1812024

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.