On D 5 -polynomials with integer coefficients

Yasuhiro Kishi[1]

  • [1] Department of Mathematics Fukuoka University of Education 1-1 Bunkyoumachi Akama, Munakata-shi Fukuoka, 811-4192 Japan

Annales mathématiques Blaise Pascal (2009)

  • Volume: 16, Issue: 1, page 113-125
  • ISSN: 1259-1734

Abstract

top
We give a family of D 5 -polynomials with integer coefficients whose splitting fields over are unramified cyclic quintic extensions of quadratic fields. Our polynomials are constructed by using Fibonacci, Lucas numbers and units of certain cyclic quartic fields.

How to cite

top

Kishi, Yasuhiro. "On $D_5$-polynomials with integer coefficients." Annales mathématiques Blaise Pascal 16.1 (2009): 113-125. <http://eudml.org/doc/10564>.

@article{Kishi2009,
abstract = {We give a family of $D_5$-polynomials with integer coefficients whose splitting fields over $\mathbb\{Q\}$ are unramified cyclic quintic extensions of quadratic fields. Our polynomials are constructed by using Fibonacci, Lucas numbers and units of certain cyclic quartic fields.},
affiliation = {Department of Mathematics Fukuoka University of Education 1-1 Bunkyoumachi Akama, Munakata-shi Fukuoka, 811-4192 Japan},
author = {Kishi, Yasuhiro},
journal = {Annales mathématiques Blaise Pascal},
keywords = {class number; Fibonacci number; polynomial; imaginary quadratic field},
language = {eng},
month = {1},
number = {1},
pages = {113-125},
publisher = {Annales mathématiques Blaise Pascal},
title = {On $D_5$-polynomials with integer coefficients},
url = {http://eudml.org/doc/10564},
volume = {16},
year = {2009},
}

TY - JOUR
AU - Kishi, Yasuhiro
TI - On $D_5$-polynomials with integer coefficients
JO - Annales mathématiques Blaise Pascal
DA - 2009/1//
PB - Annales mathématiques Blaise Pascal
VL - 16
IS - 1
SP - 113
EP - 125
AB - We give a family of $D_5$-polynomials with integer coefficients whose splitting fields over $\mathbb{Q}$ are unramified cyclic quintic extensions of quadratic fields. Our polynomials are constructed by using Fibonacci, Lucas numbers and units of certain cyclic quartic fields.
LA - eng
KW - class number; Fibonacci number; polynomial; imaginary quadratic field
UR - http://eudml.org/doc/10564
ER -

References

top
  1. N. C. Ankeny, S. Chowla, On the divisibility of the class number of quadratic fields, Pacific J. Math. 5 (1955), 321-324 Zbl0065.02402MR85301
  2. Dongho Byeon, Real quadratic fields with class number divisible by 5 or 7, Manuscripta Math. 120 (2006), 211-215 Zbl1153.11337MR2234249
  3. H. Ichimura, Note on the class numbers of certain real quadratic fields, Abh. Math. Sem. Univ. Hamburg 73 (2003), 281-288 Zbl1050.11090MR2028521
  4. Masafumi Imaoka, Yasuhiro Kishi, On dihedral extensions and Frobenius extensions, Galois theory and modular forms 11 (2004), 195-220, Kluwer Acad. Publ., Boston, MA Zbl1068.11070MR2059764
  5. Jean-François Mestre, Courbes elliptiques et groupes de classes d’idéaux de certains corps quadratiques, J. Reine Angew. Math. 343 (1983), 23-35 Zbl0502.12004MR705875
  6. T. Nagell, Über die Klassenzahl imaginär-quadratischer Zahlköper, Abh. Math. Sem. Univ. Hamburg 1 (1922), 140-150 
  7. S. Nakamura, A microcosm of Fibonacci numbers (Japanese), (2002), Nippon Hyoronsha Co., Tokyo 
  8. Charles J. Parry, On the class number of relative quadratic fields, Math. Comp. 32 (1978), 1261-1270 Zbl0401.12008MR502013
  9. Paulo Ribenboim, The new book of prime number records, (1996), Springer-Verlag, New York Zbl0856.11001MR1377060
  10. Masahiko Sase, On a family of quadratic fields whose class numbers are divisible by five, Proc. Japan Acad. Ser. A Math. Sci. 74 (1998), 120-123 Zbl0926.11081MR1658854
  11. P. J. Weinberger, Real quadratic fields with class numbers divisible by n , J. Number Theory 5 (1973), 237-241 Zbl0287.12007MR335471
  12. Yoshihiko Yamamoto, On unramified Galois extensions of quadratic number fields, Osaka J. Math. 7 (1970), 57-76 Zbl0222.12003MR266898

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.