On -polynomials with integer coefficients
- [1] Department of Mathematics Fukuoka University of Education 1-1 Bunkyoumachi Akama, Munakata-shi Fukuoka, 811-4192 Japan
Annales mathématiques Blaise Pascal (2009)
- Volume: 16, Issue: 1, page 113-125
- ISSN: 1259-1734
Access Full Article
topAbstract
topHow to cite
topKishi, Yasuhiro. "On $D_5$-polynomials with integer coefficients." Annales mathématiques Blaise Pascal 16.1 (2009): 113-125. <http://eudml.org/doc/10564>.
@article{Kishi2009,
abstract = {We give a family of $D_5$-polynomials with integer coefficients whose splitting fields over $\mathbb\{Q\}$ are unramified cyclic quintic extensions of quadratic fields. Our polynomials are constructed by using Fibonacci, Lucas numbers and units of certain cyclic quartic fields.},
affiliation = {Department of Mathematics Fukuoka University of Education 1-1 Bunkyoumachi Akama, Munakata-shi Fukuoka, 811-4192 Japan},
author = {Kishi, Yasuhiro},
journal = {Annales mathématiques Blaise Pascal},
keywords = {class number; Fibonacci number; polynomial; imaginary quadratic field},
language = {eng},
month = {1},
number = {1},
pages = {113-125},
publisher = {Annales mathématiques Blaise Pascal},
title = {On $D_5$-polynomials with integer coefficients},
url = {http://eudml.org/doc/10564},
volume = {16},
year = {2009},
}
TY - JOUR
AU - Kishi, Yasuhiro
TI - On $D_5$-polynomials with integer coefficients
JO - Annales mathématiques Blaise Pascal
DA - 2009/1//
PB - Annales mathématiques Blaise Pascal
VL - 16
IS - 1
SP - 113
EP - 125
AB - We give a family of $D_5$-polynomials with integer coefficients whose splitting fields over $\mathbb{Q}$ are unramified cyclic quintic extensions of quadratic fields. Our polynomials are constructed by using Fibonacci, Lucas numbers and units of certain cyclic quartic fields.
LA - eng
KW - class number; Fibonacci number; polynomial; imaginary quadratic field
UR - http://eudml.org/doc/10564
ER -
References
top- N. C. Ankeny, S. Chowla, On the divisibility of the class number of quadratic fields, Pacific J. Math. 5 (1955), 321-324 Zbl0065.02402MR85301
- Dongho Byeon, Real quadratic fields with class number divisible by 5 or 7, Manuscripta Math. 120 (2006), 211-215 Zbl1153.11337MR2234249
- H. Ichimura, Note on the class numbers of certain real quadratic fields, Abh. Math. Sem. Univ. Hamburg 73 (2003), 281-288 Zbl1050.11090MR2028521
- Masafumi Imaoka, Yasuhiro Kishi, On dihedral extensions and Frobenius extensions, Galois theory and modular forms 11 (2004), 195-220, Kluwer Acad. Publ., Boston, MA Zbl1068.11070MR2059764
- Jean-François Mestre, Courbes elliptiques et groupes de classes d’idéaux de certains corps quadratiques, J. Reine Angew. Math. 343 (1983), 23-35 Zbl0502.12004MR705875
- T. Nagell, Über die Klassenzahl imaginär-quadratischer Zahlköper, Abh. Math. Sem. Univ. Hamburg 1 (1922), 140-150
- S. Nakamura, A microcosm of Fibonacci numbers (Japanese), (2002), Nippon Hyoronsha Co., Tokyo
- Charles J. Parry, On the class number of relative quadratic fields, Math. Comp. 32 (1978), 1261-1270 Zbl0401.12008MR502013
- Paulo Ribenboim, The new book of prime number records, (1996), Springer-Verlag, New York Zbl0856.11001MR1377060
- Masahiko Sase, On a family of quadratic fields whose class numbers are divisible by five, Proc. Japan Acad. Ser. A Math. Sci. 74 (1998), 120-123 Zbl0926.11081MR1658854
- P. J. Weinberger, Real quadratic fields with class numbers divisible by , J. Number Theory 5 (1973), 237-241 Zbl0287.12007MR335471
- Yoshihiko Yamamoto, On unramified Galois extensions of quadratic number fields, Osaka J. Math. 7 (1970), 57-76 Zbl0222.12003MR266898
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.