Relations entre quelques lois de probabilités

F. Chartier; E. Morice

Revue de Statistique Appliquée (1967)

  • Volume: 15, Issue: 4, page 17-33
  • ISSN: 0035-175X

How to cite

top

Chartier, F., and Morice, E.. "Relations entre quelques lois de probabilités." Revue de Statistique Appliquée 15.4 (1967): 17-33. <http://eudml.org/doc/105837>.

@article{Chartier1967,
author = {Chartier, F., Morice, E.},
journal = {Revue de Statistique Appliquée},
language = {fre},
number = {4},
pages = {17-33},
publisher = {Société de Statistique de France},
title = {Relations entre quelques lois de probabilités},
url = {http://eudml.org/doc/105837},
volume = {15},
year = {1967},
}

TY - JOUR
AU - Chartier, F.
AU - Morice, E.
TI - Relations entre quelques lois de probabilités
JO - Revue de Statistique Appliquée
PY - 1967
PB - Société de Statistique de France
VL - 15
IS - 4
SP - 17
EP - 33
LA - fre
UR - http://eudml.org/doc/105837
ER -

References

top
  1. [1] N.B.S. - Tables of the binomial probability distribution. Applied Math Series 6, National Bureau of Standards 
  2. [2] H.G. Romig - 50-100 binomial tables, Wiley (New-York) Zbl0050.35205MR56358
  3. [3] The Staff of the Harvard University Computation Laboratory, Tables of the Cumulative Binomial Probability Distributions. Harvard University Press, Cambridge, Mass. (1955). Zbl0067.36704MR82203
  4. [4] E.C. Molina - Poisson's exponential binomial limits, Van Nostrand, New-York (1942). Zbl0060.29511MR6638
  5. [5] Williamson and Bretharton - Tables of the negative binomial distributionWiley (1963) Zbl0119.35703
  6. [6] Bartko - Approximating the negative binomial.Technometrics (1966) 8, 345-350. 
  7. [7] Hald et Sinkbaek - A table of percentage points of the χ2 distributionSkandinavisk Actuarietidskrift (1950). Zbl0041.46004
  8. (partiellement reproduites dans "HALD" Statistical Tables and Formulas" Wiley (1952), qui donne aussi les tables de F pour : ν1 = 1..(1)..20..(2)..30..(5)..50..60..80..100..200..500..∞ ν2 = 1..(1)..30..(2)..50..(5)..70..(10)..100..125..150..200..500.. 1000..∞ α = 50 - 70 - 90 - 95 - 97, 5 - 99 - 99, 5 - 99, 95 (en %) 
  9. [8] K. Pearson - Tables of the Incomplete Gamma FunctionBiometrika (1922). The University Press. 
  10. [9] K. Pearson - Tables of the Incomplete Beta Function. The University Press, Cambridge (1934). Zbl0157.24103MR226815
  11. [10] D.B. Owen - Handbook of Statistical Tables. Addison-Wesley Publishing Company, Reading, Mass. (1962). Zbl0102.35203MR161401
  12. [11] G.P. Patil - On the evaluation of the negative binomial distribution with examples. Technometrics (1960) 2 p. 501-505. Zbl0096.13403MR119280
  13. [12] D.B. Owen - "Letter to the Editor". Technometrics Vol. 8, n° 4 (Nov. 1966). 

NotesEmbed ?

top

You must be logged in to post comments.