On the range of the Fourier transform connected with Riemann-Liouville operator
Lakhdar Tannech Rachdi[1]; Ahlem Rouz[1]
- [1] Department of Mathematics Faculty of Sciences of Tunis 2092 El Manar 2 Tunis Tunisia
Annales mathématiques Blaise Pascal (2009)
- Volume: 16, Issue: 2, page 355-397
- ISSN: 1259-1734
Access Full Article
topAbstract
topHow to cite
topRachdi, Lakhdar Tannech, and Rouz, Ahlem. "On the range of the Fourier transform connected with Riemann-Liouville operator." Annales mathématiques Blaise Pascal 16.2 (2009): 355-397. <http://eudml.org/doc/10585>.
@article{Rachdi2009,
abstract = {We characterize the range of some spaces of functions by the Fourier transform associated with the Riemann-Liouville operator $\mathscr\{R\}_\{\alpha \},\ \alpha \ge 0$ and we give a new description of the Schwartz spaces. Next, we prove a Paley-Wiener and a Paley-Wiener-Schwartz theorems.},
affiliation = {Department of Mathematics Faculty of Sciences of Tunis 2092 El Manar 2 Tunis Tunisia; Department of Mathematics Faculty of Sciences of Tunis 2092 El Manar 2 Tunis Tunisia},
author = {Rachdi, Lakhdar Tannech, Rouz, Ahlem},
journal = {Annales mathématiques Blaise Pascal},
keywords = {Riemann-Liouville operator; Fourier transform; Paley-Wiener-Schwartz theorems},
language = {eng},
month = {7},
number = {2},
pages = {355-397},
publisher = {Annales mathématiques Blaise Pascal},
title = {On the range of the Fourier transform connected with Riemann-Liouville operator},
url = {http://eudml.org/doc/10585},
volume = {16},
year = {2009},
}
TY - JOUR
AU - Rachdi, Lakhdar Tannech
AU - Rouz, Ahlem
TI - On the range of the Fourier transform connected with Riemann-Liouville operator
JO - Annales mathématiques Blaise Pascal
DA - 2009/7//
PB - Annales mathématiques Blaise Pascal
VL - 16
IS - 2
SP - 355
EP - 397
AB - We characterize the range of some spaces of functions by the Fourier transform associated with the Riemann-Liouville operator $\mathscr{R}_{\alpha },\ \alpha \ge 0$ and we give a new description of the Schwartz spaces. Next, we prove a Paley-Wiener and a Paley-Wiener-Schwartz theorems.
LA - eng
KW - Riemann-Liouville operator; Fourier transform; Paley-Wiener-Schwartz theorems
UR - http://eudml.org/doc/10585
ER -
References
top- N. Akhiezer, Vorlesungen Über Approximations Theorie, (1953), Akademieverlag, Berlin Zbl0060.16906MR61692
- L. E. Andersson, On the determination of a function from spherical averages, SIAM. J. Math Anal 19 (1988), 214-234 Zbl0638.44004MR924556
- C. Baccar, N. B. Hamadi, L. -T. Rachdi, Inversion formulas for the Riemann-Liouville transform and its dual associated with singular partial differential operators, Internat. J. Math. Math. Sci. 2006, Article ID 86238 (2006), 1-26 Zbl1131.44002MR2172801
- H. H. Bang, A property of infinitely differentiable functions, Proc. Amer. Math. Soc 108 (1990), 73-76 Zbl0707.26015MR1024259
- R. P. Boas, Entire Functions, (1954), Academic Press, New-York Zbl0058.30201MR68627
- A. Erdely, all, Higher Transcendental Functions, I (1953), Mc Graw-Hill Book Compagny, New-York
- A. Erdely, all, Tables of Integral Transforms, II (1954), Mc Graw-Hill Book Compagny, New-York
- J. A. Fawcett, Inversion of N-dimensional spherical means, SIAM. J. Appl. Math. 45 (1985), 336-341 Zbl0588.44006MR781111
- H. Helesten, L. E. Anderson, An inverse method for the processing of synthetic aperture radar data, Inv. Prob. 3 (1987), 111-124 Zbl0619.65132MR875320
- M. Herberthson, A numerical Implementation of An Inverse Formula for CARABAS Raw Data, (1986), National Defense Research Institute, Internal Report D 30430-3.2, Linköping, Sweden
- A. N. Kolmogoroff, On Inequalities Between Upper Bounds of the Successive Derivatives of an Arbitrary Function on an Infinite Interval, 4 (1949), Amer. Math. Soc. Translation Zbl0061.11602MR31009
- N.N. Lebedev, Special Functions and Their Applications, (1972), Dover publications, Inc., New-York Zbl0271.33001MR350075
- M. M. Nessibi, L. -T. Rachdi, K. Trimèche, Ranges and inversion formulas for spherical mean operator and its dual, J. Math. Anal. Appl. 196 (1995), 861-884 Zbl0845.43005MR1365228
- L. T. Rachdi, K. Trimèche, Weyl transforms associated with the spherical mean operator, Anal. Appl. 1 (2003), 141-164 Zbl1045.47038MR1976612
- L. Schwartz, Theory of Distributions, (1957), I, Hermann, Paris
- L. Schwartz, Theorie des Distributions, (1978), Hermann, Paris Zbl0399.46028MR209834
- E. M. Stein, Functions of exponential type, Ann. of Math. 65, No 2 (1957), 582-592 Zbl0079.13103MR85342
- CH. Swartz, Convergence of convolution operators, Studia.Math. 42 (1972), 249-257 Zbl0239.46029MR315438
- K. Trimèche, Transformation intégrale de Weyl et théorème de Paley-Wiener associés à un opérateur différentiel singulier sur , J. Math. Pures Appl. 60 (1981), 51-98 Zbl0416.44002MR616008
- K. Trimèche, Inversion of the Lions translation operator using generalized wavelets, Appl. Comput. Harmonic Anal. 4 (1997), 97-112 Zbl0872.34059MR1429682
- Vu Kim Tuan, On the range of the Hankel and extended Hankel transforms, J. Math. Anal. Appl. 209 (1997), 460-478 Zbl0881.44004MR1474619
- G.N. Watson, A treatise on the Theory of Bessel functions, (1966), 2nd ed. Cambridge Univ. Press., London/New-York Zbl0174.36202MR1349110
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.