On the range of the Fourier transform connected with Riemann-Liouville operator

Lakhdar Tannech Rachdi[1]; Ahlem Rouz[1]

  • [1] Department of Mathematics Faculty of Sciences of Tunis 2092 El Manar 2 Tunis Tunisia

Annales mathématiques Blaise Pascal (2009)

  • Volume: 16, Issue: 2, page 355-397
  • ISSN: 1259-1734

Abstract

top
We characterize the range of some spaces of functions by the Fourier transform associated with the Riemann-Liouville operator α , α 0 and we give a new description of the Schwartz spaces. Next, we prove a Paley-Wiener and a Paley-Wiener-Schwartz theorems.

How to cite

top

Rachdi, Lakhdar Tannech, and Rouz, Ahlem. "On the range of the Fourier transform connected with Riemann-Liouville operator." Annales mathématiques Blaise Pascal 16.2 (2009): 355-397. <http://eudml.org/doc/10585>.

@article{Rachdi2009,
abstract = {We characterize the range of some spaces of functions by the Fourier transform associated with the Riemann-Liouville operator $\mathscr\{R\}_\{\alpha \},\ \alpha \ge 0$ and we give a new description of the Schwartz spaces. Next, we prove a Paley-Wiener and a Paley-Wiener-Schwartz theorems.},
affiliation = {Department of Mathematics Faculty of Sciences of Tunis 2092 El Manar 2 Tunis Tunisia; Department of Mathematics Faculty of Sciences of Tunis 2092 El Manar 2 Tunis Tunisia},
author = {Rachdi, Lakhdar Tannech, Rouz, Ahlem},
journal = {Annales mathématiques Blaise Pascal},
keywords = {Riemann-Liouville operator; Fourier transform; Paley-Wiener-Schwartz theorems},
language = {eng},
month = {7},
number = {2},
pages = {355-397},
publisher = {Annales mathématiques Blaise Pascal},
title = {On the range of the Fourier transform connected with Riemann-Liouville operator},
url = {http://eudml.org/doc/10585},
volume = {16},
year = {2009},
}

TY - JOUR
AU - Rachdi, Lakhdar Tannech
AU - Rouz, Ahlem
TI - On the range of the Fourier transform connected with Riemann-Liouville operator
JO - Annales mathématiques Blaise Pascal
DA - 2009/7//
PB - Annales mathématiques Blaise Pascal
VL - 16
IS - 2
SP - 355
EP - 397
AB - We characterize the range of some spaces of functions by the Fourier transform associated with the Riemann-Liouville operator $\mathscr{R}_{\alpha },\ \alpha \ge 0$ and we give a new description of the Schwartz spaces. Next, we prove a Paley-Wiener and a Paley-Wiener-Schwartz theorems.
LA - eng
KW - Riemann-Liouville operator; Fourier transform; Paley-Wiener-Schwartz theorems
UR - http://eudml.org/doc/10585
ER -

References

top
  1. N. Akhiezer, Vorlesungen Über Approximations Theorie, (1953), Akademieverlag, Berlin Zbl0060.16906MR61692
  2. L. E. Andersson, On the determination of a function from spherical averages, SIAM. J. Math Anal 19 (1988), 214-234 Zbl0638.44004MR924556
  3. C. Baccar, N. B. Hamadi, L. -T. Rachdi, Inversion formulas for the Riemann-Liouville transform and its dual associated with singular partial differential operators, Internat. J. Math. Math. Sci. 2006, Article ID 86238 (2006), 1-26 Zbl1131.44002MR2172801
  4. H. H. Bang, A property of infinitely differentiable functions, Proc. Amer. Math. Soc 108 (1990), 73-76 Zbl0707.26015MR1024259
  5. R. P. Boas, Entire Functions, (1954), Academic Press, New-York Zbl0058.30201MR68627
  6. A. Erdely, all, Higher Transcendental Functions, I (1953), Mc Graw-Hill Book Compagny, New-York 
  7. A. Erdely, all, Tables of Integral Transforms, II (1954), Mc Graw-Hill Book Compagny, New-York 
  8. J. A. Fawcett, Inversion of N-dimensional spherical means, SIAM. J. Appl. Math. 45 (1985), 336-341 Zbl0588.44006MR781111
  9. H. Helesten, L. E. Anderson, An inverse method for the processing of synthetic aperture radar data, Inv. Prob. 3 (1987), 111-124 Zbl0619.65132MR875320
  10. M. Herberthson, A numerical Implementation of An Inverse Formula for CARABAS Raw Data, (1986), National Defense Research Institute, Internal Report D 30430-3.2, Linköping, Sweden 
  11. A. N. Kolmogoroff, On Inequalities Between Upper Bounds of the Successive Derivatives of an Arbitrary Function on an Infinite Interval, 4 (1949), Amer. Math. Soc. Translation Zbl0061.11602MR31009
  12. N.N. Lebedev, Special Functions and Their Applications, (1972), Dover publications, Inc., New-York Zbl0271.33001MR350075
  13. M. M. Nessibi, L. -T. Rachdi, K. Trimèche, Ranges and inversion formulas for spherical mean operator and its dual, J. Math. Anal. Appl. 196 (1995), 861-884 Zbl0845.43005MR1365228
  14. L. T. Rachdi, K. Trimèche, Weyl transforms associated with the spherical mean operator, Anal. Appl. 1 (2003), 141-164 Zbl1045.47038MR1976612
  15. L. Schwartz, Theory of Distributions, (1957), I, Hermann, Paris 
  16. L. Schwartz, Theorie des Distributions, (1978), Hermann, Paris Zbl0399.46028MR209834
  17. E. M. Stein, Functions of exponential type, Ann. of Math. 65, No 2 (1957), 582-592 Zbl0079.13103MR85342
  18. CH. Swartz, Convergence of convolution operators, Studia.Math. 42 (1972), 249-257 Zbl0239.46029MR315438
  19. K. Trimèche, Transformation intégrale de Weyl et théorème de Paley-Wiener associés à un opérateur différentiel singulier sur ( 0 , + ) , J. Math. Pures Appl. 60 (1981), 51-98 Zbl0416.44002MR616008
  20. K. Trimèche, Inversion of the Lions translation operator using generalized wavelets, Appl. Comput. Harmonic Anal. 4 (1997), 97-112 Zbl0872.34059MR1429682
  21. Vu Kim Tuan, On the range of the Hankel and extended Hankel transforms, J. Math. Anal. Appl. 209 (1997), 460-478 Zbl0881.44004MR1474619
  22. G.N. Watson, A treatise on the Theory of Bessel functions, (1966), 2nd ed. Cambridge Univ. Press., London/New-York Zbl0174.36202MR1349110

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.