Global time estimates for solutions to equations of dissipative type
Michael Ruzhansky[1]; James Smith[1]
- [1] Department of Mathematics Imperial College London 180 Queens’s Gate London SW7 2AZ United Kingdom
Journées Équations aux dérivées partielles (2005)
- page 1-29
- ISSN: 0752-0360
Access Full Article
topAbstract
topHow to cite
topRuzhansky, Michael, and Smith, James. "Global time estimates for solutions to equations of dissipative type." Journées Équations aux dérivées partielles (2005): 1-29. <http://eudml.org/doc/10603>.
@article{Ruzhansky2005,
abstract = {Global time estimates of $L^p-L^q$ norms of solutions to general strictly hyperbolic partial differential equations are considered. The case of special interest in this paper are equations exhibiting the dissipative behaviour. Results are applied to discuss time decay estimates for Fokker-Planck equations and for wave type equations with negative mass.},
affiliation = {Department of Mathematics Imperial College London 180 Queens’s Gate London SW7 2AZ United Kingdom; Department of Mathematics Imperial College London 180 Queens’s Gate London SW7 2AZ United Kingdom},
author = {Ruzhansky, Michael, Smith, James},
journal = {Journées Équations aux dérivées partielles},
keywords = {hyperbolic equations; time decay; Strichartz estimates; Fokker-Planck equation; strictly hyperbolic equations; Strichartz estimates time; decay estimates; stationary phase method; Fokker-Planck equations},
language = {eng},
month = {6},
pages = {1-29},
publisher = {Groupement de recherche 2434 du CNRS},
title = {Global time estimates for solutions to equations of dissipative type},
url = {http://eudml.org/doc/10603},
year = {2005},
}
TY - JOUR
AU - Ruzhansky, Michael
AU - Smith, James
TI - Global time estimates for solutions to equations of dissipative type
JO - Journées Équations aux dérivées partielles
DA - 2005/6//
PB - Groupement de recherche 2434 du CNRS
SP - 1
EP - 29
AB - Global time estimates of $L^p-L^q$ norms of solutions to general strictly hyperbolic partial differential equations are considered. The case of special interest in this paper are equations exhibiting the dissipative behaviour. Results are applied to discuss time decay estimates for Fokker-Planck equations and for wave type equations with negative mass.
LA - eng
KW - hyperbolic equations; time decay; Strichartz estimates; Fokker-Planck equation; strictly hyperbolic equations; Strichartz estimates time; decay estimates; stationary phase method; Fokker-Planck equations
UR - http://eudml.org/doc/10603
ER -
References
top- Brenner, P., On estimates for the wave-equation, Math. Z. 145 (1975), no. 3, 251–254. Zbl0321.35052MR387819
- Brenner, P., -estimates for Fourier integral operators related to hyperbolic equations, Math. Z. 152 (1977), no. 3, 273–286. Zbl0325.35009MR430872
- Evans, L. C., Partial differential equations, Graduate Studies in Mathematics, vol. 19, American Mathematical Society, Providence, RI, 1998. Zbl0902.35002MR1625845
- Gelfand, I. M., Kapranov, M. M., and Zelevinsky, A. V., Discriminants, resultants, and multidimensional determinants, Mathematics: Theory & Applications, Birkhäuser Boston Inc., Boston, MA, 1994. Zbl0827.14036MR1264417
- Hirosawa, F., Reissig, M., From wave to Klein-Gordon type decay rates, Nonlinear hyperbolic equations, spectral theory, and wavelet transformations, 95–155, Oper. Theory Adv. Appl., 145, Birkhäuser, Basel, 2003. Zbl1052.35110MR2035136
- Hörmander, L., Lectures on nonlinear hyperbolic differential equations, Mathématiques & Applications (Berlin), vol. 26, Springer-Verlag, Berlin, 1997. Zbl0881.35001MR1466700
- Klinger, A., The Vandermonde matrix, Amer. Math. Monthly 74 (1967), 571–574. Zbl0153.35402MR213375
- Littman, W., -estimates for singular integral operators arising from hyperbolic equations, Partial differential equations (Proc. Sympos. Pure Math., Vol. XXIII, Univ. California, Berkeley, Calif., 1971), Amer. Math. Soc., Providence, R.I., 1973, pp. 479–481. Zbl0263.44006MR358443
- Matsumura, A., On the asymptotic behaviour of solutions of semi-linear wave equations, Publ. Res. Inst. Math. Sci., Kyoto Univ. 12 (1976), no. 1, 169–189. Zbl0356.35008MR420031
- Pecher, H., -Abschätzungen und klassische Lösungen für nichtlineare Wellengleichungen. I, Math. Z. 150 (1976), no. 2, 159–183. Zbl0318.35054MR435604
- Racke, R., Lectures on nonlinear evolution equations: Initial value problems, Aspects of Mathematics, E19, Friedr. Vieweg & Sohn, Braunschweig, 1992. Zbl0811.35002MR1158463
- Ruzhansky, M., Singularities of affine fibrations in the regularity theory of Fourier integral operators, Russian Math. Surveys, 55 (2000), 99–170. Zbl0961.35194MR1751819
- Strichartz, R. S., Convolutions with kernels having singularities on a sphere, Trans. Amer. Math. Soc. 148 (1970), 461–471. Zbl0199.17502MR256219
- Strichartz, R. S., A priori estimates for the wave equation and some applications, J. Funct. Analysis 5 (1970), 218–235. Zbl0189.40701MR257581
- Sugimoto, M., A priori estimates for higher order hyperbolic equations, Math. Z. 215 (1994), no. 4, 519–531. Zbl0790.35063MR1269488
- Sugimoto, M., Estimates for hyperbolic equations with non-convex characteristics, Math. Z. 222 (1996), no. 4, 521–531. Zbl0867.35013MR1406266
- Sugimoto, M., Estimates for hyperbolic equations of space dimension 3, J. Funct. Anal. 160 (1998), no. 2, 382–407. Zbl0917.35064MR1665291
- Volevich, L. R. and Radkevich, E. V., Uniform estimates of solutions of the Cauchy problem for hyperbolic equations with a small parameter multiplying higher derivatives, Diff. Eq. 39 (2003), 521–535. Zbl1125.35379MR2132995
- Volevich, L. R. and Radkevich, E. V., Stable pencils of hyperbolic polynomials and the Cauchy problem for hyperbolic equations with a small parameter at the highest derivatives, Trans. Moscow Math. Soc. 65 (2004), 63–104. Zbl1197.35005MR2193437
- von Wahl, W., -decay rates for homogeneous wave-equations, Math. Z. 120 (1971), 93–106. Zbl0212.44201MR280885
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.