Global time estimates for solutions to equations of dissipative type

Michael Ruzhansky[1]; James Smith[1]

  • [1] Department of Mathematics Imperial College London 180 Queens’s Gate London SW7 2AZ United Kingdom

Journées Équations aux dérivées partielles (2005)

  • page 1-29
  • ISSN: 0752-0360

Abstract

top
Global time estimates of L p - L q norms of solutions to general strictly hyperbolic partial differential equations are considered. The case of special interest in this paper are equations exhibiting the dissipative behaviour. Results are applied to discuss time decay estimates for Fokker-Planck equations and for wave type equations with negative mass.

How to cite

top

Ruzhansky, Michael, and Smith, James. "Global time estimates for solutions to equations of dissipative type." Journées Équations aux dérivées partielles (2005): 1-29. <http://eudml.org/doc/10603>.

@article{Ruzhansky2005,
abstract = {Global time estimates of $L^p-L^q$ norms of solutions to general strictly hyperbolic partial differential equations are considered. The case of special interest in this paper are equations exhibiting the dissipative behaviour. Results are applied to discuss time decay estimates for Fokker-Planck equations and for wave type equations with negative mass.},
affiliation = {Department of Mathematics Imperial College London 180 Queens’s Gate London SW7 2AZ United Kingdom; Department of Mathematics Imperial College London 180 Queens’s Gate London SW7 2AZ United Kingdom},
author = {Ruzhansky, Michael, Smith, James},
journal = {Journées Équations aux dérivées partielles},
keywords = {hyperbolic equations; time decay; Strichartz estimates; Fokker-Planck equation; strictly hyperbolic equations; Strichartz estimates time; decay estimates; stationary phase method; Fokker-Planck equations},
language = {eng},
month = {6},
pages = {1-29},
publisher = {Groupement de recherche 2434 du CNRS},
title = {Global time estimates for solutions to equations of dissipative type},
url = {http://eudml.org/doc/10603},
year = {2005},
}

TY - JOUR
AU - Ruzhansky, Michael
AU - Smith, James
TI - Global time estimates for solutions to equations of dissipative type
JO - Journées Équations aux dérivées partielles
DA - 2005/6//
PB - Groupement de recherche 2434 du CNRS
SP - 1
EP - 29
AB - Global time estimates of $L^p-L^q$ norms of solutions to general strictly hyperbolic partial differential equations are considered. The case of special interest in this paper are equations exhibiting the dissipative behaviour. Results are applied to discuss time decay estimates for Fokker-Planck equations and for wave type equations with negative mass.
LA - eng
KW - hyperbolic equations; time decay; Strichartz estimates; Fokker-Planck equation; strictly hyperbolic equations; Strichartz estimates time; decay estimates; stationary phase method; Fokker-Planck equations
UR - http://eudml.org/doc/10603
ER -

References

top
  1. Brenner, P., On L p - L p estimates for the wave-equation, Math. Z. 145 (1975), no. 3, 251–254. Zbl0321.35052MR387819
  2. Brenner, P., L p - L p -estimates for Fourier integral operators related to hyperbolic equations, Math. Z. 152 (1977), no. 3, 273–286. Zbl0325.35009MR430872
  3. Evans, L. C., Partial differential equations, Graduate Studies in Mathematics, vol. 19, American Mathematical Society, Providence, RI, 1998. Zbl0902.35002MR1625845
  4. Gelfand, I. M., Kapranov, M. M., and Zelevinsky, A. V., Discriminants, resultants, and multidimensional determinants, Mathematics: Theory & Applications, Birkhäuser Boston Inc., Boston, MA, 1994. Zbl0827.14036MR1264417
  5. Hirosawa, F., Reissig, M., From wave to Klein-Gordon type decay rates, Nonlinear hyperbolic equations, spectral theory, and wavelet transformations, 95–155, Oper. Theory Adv. Appl., 145, Birkhäuser, Basel, 2003. Zbl1052.35110MR2035136
  6. Hörmander, L., Lectures on nonlinear hyperbolic differential equations, Mathématiques & Applications (Berlin), vol. 26, Springer-Verlag, Berlin, 1997. Zbl0881.35001MR1466700
  7. Klinger, A., The Vandermonde matrix, Amer. Math. Monthly 74 (1967), 571–574. Zbl0153.35402MR213375
  8. Littman, W., L p - L q -estimates for singular integral operators arising from hyperbolic equations, Partial differential equations (Proc. Sympos. Pure Math., Vol. XXIII, Univ. California, Berkeley, Calif., 1971), Amer. Math. Soc., Providence, R.I., 1973, pp. 479–481. Zbl0263.44006MR358443
  9. Matsumura, A., On the asymptotic behaviour of solutions of semi-linear wave equations, Publ. Res. Inst. Math. Sci., Kyoto Univ. 12 (1976), no. 1, 169–189. Zbl0356.35008MR420031
  10. Pecher, H., L p -Abschätzungen und klassische Lösungen für nichtlineare Wellengleichungen. I, Math. Z. 150 (1976), no. 2, 159–183. Zbl0318.35054MR435604
  11. Racke, R., Lectures on nonlinear evolution equations: Initial value problems, Aspects of Mathematics, E19, Friedr. Vieweg & Sohn, Braunschweig, 1992. Zbl0811.35002MR1158463
  12. Ruzhansky, M., Singularities of affine fibrations in the regularity theory of Fourier integral operators, Russian Math. Surveys, 55 (2000), 99–170. Zbl0961.35194MR1751819
  13. Strichartz, R. S., Convolutions with kernels having singularities on a sphere, Trans. Amer. Math. Soc. 148 (1970), 461–471. Zbl0199.17502MR256219
  14. Strichartz, R. S., A priori estimates for the wave equation and some applications, J. Funct. Analysis 5 (1970), 218–235. Zbl0189.40701MR257581
  15. Sugimoto, M., A priori estimates for higher order hyperbolic equations, Math. Z. 215 (1994), no. 4, 519–531. Zbl0790.35063MR1269488
  16. Sugimoto, M., Estimates for hyperbolic equations with non-convex characteristics, Math. Z. 222 (1996), no. 4, 521–531. Zbl0867.35013MR1406266
  17. Sugimoto, M., Estimates for hyperbolic equations of space dimension 3, J. Funct. Anal. 160 (1998), no. 2, 382–407. Zbl0917.35064MR1665291
  18. Volevich, L. R. and Radkevich, E. V., Uniform estimates of solutions of the Cauchy problem for hyperbolic equations with a small parameter multiplying higher derivatives, Diff. Eq. 39 (2003), 521–535. Zbl1125.35379MR2132995
  19. Volevich, L. R. and Radkevich, E. V., Stable pencils of hyperbolic polynomials and the Cauchy problem for hyperbolic equations with a small parameter at the highest derivatives, Trans. Moscow Math. Soc. 65 (2004), 63–104. Zbl1197.35005MR2193437
  20. von Wahl, W., L p -decay rates for homogeneous wave-equations, Math. Z. 120 (1971), 93–106. Zbl0212.44201MR280885

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.