Une approche statistique unique pour l'analyse des mélanges et la détection des modes en classification automatique

J. G. Postaire

Revue de Statistique Appliquée (1983)

  • Volume: 31, Issue: 4, page 17-36
  • ISSN: 0035-175X

How to cite

top

Postaire, J. G.. "Une approche statistique unique pour l'analyse des mélanges et la détection des modes en classification automatique." Revue de Statistique Appliquée 31.4 (1983): 17-36. <http://eudml.org/doc/106156>.

@article{Postaire1983,
author = {Postaire, J. G.},
journal = {Revue de Statistique Appliquée},
keywords = {convexity; mixture identification; classification; cluster analysis},
language = {fre},
number = {4},
pages = {17-36},
publisher = {Société de Statistique de France},
title = {Une approche statistique unique pour l'analyse des mélanges et la détection des modes en classification automatique},
url = {http://eudml.org/doc/106156},
volume = {31},
year = {1983},
}

TY - JOUR
AU - Postaire, J. G.
TI - Une approche statistique unique pour l'analyse des mélanges et la détection des modes en classification automatique
JO - Revue de Statistique Appliquée
PY - 1983
PB - Société de Statistique de France
VL - 31
IS - 4
SP - 17
EP - 36
LA - fre
KW - convexity; mixture identification; classification; cluster analysis
UR - http://eudml.org/doc/106156
ER -

References

top
  1. [1] G.H. Ball et D.J. Hall. (1967). - A clustering technique for summarizing multivariate data, Behavorial Sc., Vol.12, p. 153-155. 
  2. [2] E. Diday (1971). - Une nouvelle méthode en classification automatique et reconnaissance des formes : la méthode des nuées dynamiques, Revue de Stat. Appl. Vol. 19, n° 2, p. 20- 33. 
  3. [3] K. Fukunaga et W.L.G. Koontz (1970). - A criterion and an algorithm for grouping data, IEEE Trans. on Computers, Vol. C-19, p. 917-923. Zbl0206.48002
  4. [4] G.N. Lance et W.T. Williams (1967). - A general theory of classificatory sorting strategies 1 - Hierarchical systems, Computer Jour., Vol. 9, p. 973-980. 
  5. [5] J. Mac Queen (1967). - Some methods for classification and analysis of multivariate observations, Proc. 5th Berkeley Symp. on Math. Stat. and Prob, p. 281-297. Zbl0214.46201MR214227
  6. [6] C.T. Zahn (1971). - Graph theoretical methods for detecting and describing gestalt clusters. IEEE Trans. on Computers, Vol. C-20, p. 68 -86. Zbl0264.68040
  7. [7] J.L. Fleiss et J. Zubin (1969). - On the method and theory of clustering, Multivariate Behavioral Research, p. 235-250. 
  8. [8] I. Gitman (1973). - An algorithm for nonsupervised pattern classification, IEEE Trans.on Syst., Man & Cyb., Vol. SMC-3, p. 66-74. Zbl0245.68043
  9. [9] I. Gitman et M.D. Levine (1970). - An algorithm for detecting unimodal fuzy sets and its application as a clustering technique, IEEE Trans. on Computers, Vol. C-19, p. 583-593. Zbl0194.48101
  10. [10] R. Mizoguchi et M. Shimura (1976). - Non parametric learning without a teacher based on mode estimation, IEEE Trans. on Computers,Vol. C-25, p. 1109-1117. Zbl0354.68117MR428848
  11. [11] D. Wishart (1978). - Estimating the modes of a multivariate sample density, Proc. Joint Meeting of the Classif. Soc. & British Pattern Recognition Ass London. 
  12. [12] B.G. Batchelor et B.R. Wilkins (1969). - Methods fo location of clusters of patterns to initialize a learning machine, Electronics letters,Vol. 5, n° 20, p. 481- 483. 
  13. [13] K. Fukunaga et L.D. Hostetler (1975). - The estimation of the gradient of a density fonction with applications in pattern recognition, IEEE Trans. on Inf. Theory, Vol. II-21, n° 1, p. 32-40. Zbl0297.62025MR388638
  14. [14] J. Kittler (1976). - A locally sensitive method for cluster analysis, Pattern Recognition,Vol. 8 p. 23- 33. Zbl0347.68051MR395059
  15. [15] G.S. Sebestyen (1962). - Pattern recognition by an adaptive process of sample set construction, IRE Trans. on Info. Theory, Vol. II-8, p. 82-91. Zbl0108.13903
  16. [16] R.L. Thorndike (1953). - Who belong in the family ? Psychometrica, Vol.18, p. 267-276. 
  17. [17] H.P. Friedman et J. Robin (1967) - On some invariant criteria for grouping data, J. Amer. Stat. Ass., Vol. 62, p. 1159-1178. MR223012
  18. [18] M.A. Vogel et A.K.C. Wong (1979). - PFS clustering method, IEEE Trans. on Pattern Anal. & Machine Intelligence, Vol.PAMI-1, n° 3, p. 237-245. Zbl0415.62043
  19. [19] U.E. Makov et A.F.M. Smith. - A quasi-Bayes Unsupervised learning procedure for priors. IEEE Trans. Info. Theory, Vol. II-23, n° 6, p. 761-764. Zbl0397.62004
  20. [20] R. Mizoguchi et M. Shimura (1975). - An approach to unsupervised learning classification, IEEE Trans. on Computers, Vol. C-24, n°10, p. 979-983. Zbl0312.68052MR405957
  21. [21] R.F. Daly (1962). - The adaptive binary detection problem on the real line, Techn. Report 2003-3, Stanford Univ., Calif. 
  22. [22] C.G. Hillborn et D.G. Lainiotis (1968). - Optimal unsupervised learning multicategory dependant hypotheses pattern recognition, IEEE Trans. Info. Theory, Vol. II-14, p. 468-470. 
  23. [23] A. Schroeder (1976). - Analyse d'un mélange de distributions de probabilité de même type, Rev. Statist. App., Vol.24, n° 1, p. 32-62. MR445694
  24. [24] D. Kazakos (1977). - Recursive estimation of prior probabilities using a mixture, IEEE Trans. Info. Theory, Vol. II-23, n° 2, p. 203-211. Zbl0382.93058MR484674
  25. [25] N.E. Day (1969). - Estimating the components of a mixture of normal distributions, Biometrika, Vol. 56, p. 463-474. Zbl0183.48106MR254956
  26. [26] J.H. Wolfe (1970). - Pattern clustering by multivariate mixture analysis, Multiv. Behav. Res., Vol. 5, p. 329-350. 
  27. [27] D.B. Cooper et P.W. Cooper (1964). - Non supervised adaptive signal detection and pattern recognition, Info. & Control, Vol. 7, p. 416-444. Zbl0199.22402MR169721
  28. [28] P.W. Cooper (1967). - Some topics on nonsupervised adaptive detection for multivariate normal distributions, Comp. & Info. Sc., Vol. II, p. 123-146, Academic Press, N.Y. Zbl0214.47205
  29. [29] C. Vasseur et J.G. Postaire (1980). - A convexity testing method for cluster analysis, IEEE Trans. on Syst., Man & Cyb., Vol. SMC-10, n° 3, p. 145-149. Zbl0438.62050MR567188
  30. [30] J.G. Postaire et C. Vasseur (1982). - A fast algorithm for nonparametric probability density estimation, IEEE Trans. on Pattern Anal. & Machine Intelligence, Vol. PAMI-4, n° 6, p. 663 -666. 
  31. [31] J.G. Postaire et C. Vasseur (1981) - An approximate solution to normal mixture identification with application to unsupervised pattern classification, IEEE Trans. on Pattern Anal. & Machine Intelligence, Vol. PAMI-3, n° 2, p. 163- 179 (1981). 
  32. [32] J.G. Postaire et M. Limouri (1978). - The convexity concept in cluster analysis, 4th Int. Joint conf. on Pattern Recog, Kyoto, Japon. 
  33. [33] J.G. Postaire (1982). - An unsupervised Bayes classifier for normal patterns based on marginal densities analysis, Pattern Recog., Vol. 15, n° 2, p. 103-111. Zbl0473.62047MR652883
  34. [34] J.G. Postaire (1982). — Fonctions convexes et optimisation du processus de classification automatique : I. Optimisation par analyse de la convexité des fonctions de densité multivariables, RAIRO/Automatique, Vol. 16, n° 4, p. 357- 379. Zbl0538.93064
  35. [35] D.J. Eigen, F.R. Fromm & R.A. Northouse. - Cluster analysis based on dimensional information with application to feature selection and classification, IEEE Trans. Syst., Man & Cyb., Vol. SMC-4, n° 3, p. 284 -294. Zbl0305.68073
  36. [36] J.G. Postaire (1983). - Fonctions convexes et optimisation du processus de classification automatique : II. Optimisation par analyse de la convexité des fonctions de densité marginales, RAIRO/Automactique, Vol. 17, n° 1, p. 39- 59. Zbl0552.93058MR712659
  37. [37] C. Vasseur et J.G. Postaire (1979). - Convexité des fonctions de densité : application à la détection des modes en reconnaissance des formes, RAIRO/Automatique, Vol. 13, n° 2, p. 171-188. Zbl0411.93032MR537655
  38. [38] M. Limouri (1979). - Classification automatique non supervisée par analyse des densités marginales de probabilité, Diplôme d'Etudes Sup., Univ. de Rabat, Maroc. 

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.