Estimation non-paramétrique par noyaux : régression polynomiale mobile

Michel Lejeune

Revue de Statistique Appliquée (1985)

  • Volume: 33, Issue: 3, page 43-67
  • ISSN: 0035-175X

How to cite

top

Lejeune, Michel. "Estimation non-paramétrique par noyaux : régression polynomiale mobile." Revue de Statistique Appliquée 33.3 (1985): 43-67. <http://eudml.org/doc/106186>.

@article{Lejeune1985,
author = {Lejeune, Michel},
journal = {Revue de Statistique Appliquée},
keywords = {finite sampling; equidistant x values; unbiasedness; local polynomial approximation; minimum variance kernel; Legendre polynomials; optimal kernel approach; polynomial regression; boundary effects},
language = {fre},
number = {3},
pages = {43-67},
publisher = {Société de Statistique de France},
title = {Estimation non-paramétrique par noyaux : régression polynomiale mobile},
url = {http://eudml.org/doc/106186},
volume = {33},
year = {1985},
}

TY - JOUR
AU - Lejeune, Michel
TI - Estimation non-paramétrique par noyaux : régression polynomiale mobile
JO - Revue de Statistique Appliquée
PY - 1985
PB - Société de Statistique de France
VL - 33
IS - 3
SP - 43
EP - 67
LA - fre
KW - finite sampling; equidistant x values; unbiasedness; local polynomial approximation; minimum variance kernel; Legendre polynomials; optimal kernel approach; polynomial regression; boundary effects
UR - http://eudml.org/doc/106186
ER -

References

top
  1. W.S. Cleveland (1979). - Robust locally weighted regression and smoothing scatter plots, JASA, 74, 829-836. Zbl0423.62029MR556476
  2. G. Collomb (1977). - Quelques propriétés de la méthode du noyau pour l'estimation non paramétrique de la régression en un point fixé, C.R. Acad. Sci.Paris, t. 285, Série A, 289-292. Zbl0375.62042MR474612
  3. Y. Dodge, M. Lejeune (1982). — Some difficulties involving non parametric estimation of a density function, Cahiers de Méthodes Quantitatives, Tech. Report No 2 for FNRS, 1-24, Université de Neuchâtel. 
  4. V.A. Epanechnikov (1969). - Nonparametric estimation of a multidimensional probability density. Theory Prob. Appl., 14, 153- 158. Zbl0175.17101MR250422
  5. T. Gasser, H.G. Muller (1979). - Kernel estimation of regression functions, in Smoothing Techniques for curve estimation, ed. Gasser t. & Rosenblatt. Springer-VerlagHeidelberg, 23-68. Zbl0418.62033MR564251
  6. T. Gasser, H.G. Muller (1982). - Estimating regression functions and their derivatives by the kernel method, Mimeographed manuscript. Zbl0548.62028
  7. M.G. Kendall, A. Stuart (1966). — The advanced theory of statistics, Vol. 3, § 46.5, Griffin. Zbl0416.62001
  8. M. Lejeune (1984). — Optimization in non parametric regression. Compstat 84, Proceedings in Computational statistics, 412-426, Physica Verlag, Vienna. Zbl0577.62037
  9. V. Mammitzsch (1983). - A note on kernel estimators fulfilling certain moment conditions, Actes de la 44e session de l'Inst. Int. de Stat. à Madrid, Vol. 1, 30-33. 
  10. R.A. Tapia, J.R. Thompson (1980). — Nonparametric density estimation, Johns Hopkins University Press, Baltimore. Zbl0449.62029

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.