Modèles de séries chronologiques avec seuils
Revue de Statistique Appliquée (1988)
- Volume: 36, Issue: 4, page 5-23
- ISSN: 0035-175X
Access Full Article
topHow to cite
topMélard, G., and Roy, R.. "Modèles de séries chronologiques avec seuils." Revue de Statistique Appliquée 36.4 (1988): 5-23. <http://eudml.org/doc/106247>.
@article{Mélard1988,
author = {Mélard, G., Roy, R.},
journal = {Revue de Statistique Appliquée},
language = {fre},
number = {4},
pages = {5-23},
publisher = {Société de Statistique de France},
title = {Modèles de séries chronologiques avec seuils},
url = {http://eudml.org/doc/106247},
volume = {36},
year = {1988},
}
TY - JOUR
AU - Mélard, G.
AU - Roy, R.
TI - Modèles de séries chronologiques avec seuils
JO - Revue de Statistique Appliquée
PY - 1988
PB - Société de Statistique de France
VL - 36
IS - 4
SP - 5
EP - 23
LA - fre
UR - http://eudml.org/doc/106247
ER -
References
top- [1] H. Akaike, (1978). - On the likelihood of a time series model, Statistician, 27, 215-235.
- [2] J. Anděl, I. Netuka et K. Zvára (1984). - On threshold autoregressive processes, Kybernetika, 20, 89-106. Zbl0547.62058MR747062
- [3] C.F. Ansley et R. Kohn (1983). - Exact likelihood of vector autoregressive moving-average process with missing or aggregated data, Biometrika, 70, 275-278. Zbl0502.62081MR742998
- [4] G.E.P. Box et G.M. Jenkins (1976). - Time series analysis, forecasting and control, Holden-Day, San Francisco, (revised edition). Zbl0363.62069MR436499
- [5] K.S. Chan et H. Tong (1986). - On estimating thresholds in autoregressive models, J. Time Ser. Anal., 7, 179-190. Zbl0596.62085MR857248
- [6] H. Cramér (1961). - On some classes of nonstationary stochastic processes, In Proc. 4th Berkeley Symp. Math. Statist. and Prob., Vol. 2, University of California Press, Berkeley and Los Angeles, pp. 57-78. Zbl0121.35001MR150828
- [7] C.W.J. Granger et A.P. Andersen (1978). - An introduction to bilinear time series models, Vandenhoek and Ruprecht, Gôttingen. Zbl0379.62074MR483231
- [8] E.J. Hannan (1980). - The estimation of the order of an ARMA process, Ann. Statist, 8, 1071-1081. Zbl0451.62068MR585705
- [9] V Hannan et T. Ozaki (1980). - Amplitude-dependent exponential AR model fitting for non-linear random vibrations, In O.D. Anderson (Ed.) Time Series, North-Holland, Amsterdam, pp 57-71. Zbl0447.62093
- [10] G. Mélard (1982). - The likelihood function of a time-dependent ARMA model, In O.D. Anderson and M.R. Perryman (Eds.) Applied Time Series Analysis, Proceedings of the International Conference held at Houston, Texas, August, 1981, North-Holland, Amsterdam, pp 229-239. Zbl0502.62076MR692621
- [11] G. Mélard (1985). — Analyse de données chronologiques, Coll. Séminaire de Mathématiques Supérieures de l'Université de Montréal n° 89, Presses de l'Université de Montréal, Montréal. Zbl0564.62069
- [12] J.D. Petruccelli (1986). — On the consistency of least squares estimators for a threshold AR(1) model, J. Time Ser. Anal., 7, 269-278. Zbl0601.62110
- [13] J.D. Petruccelli et S.W. Woolford (1984). - A threshold AR(1) model, J. Appl. Prob., 21, 270-286. Zbl0541.62073MR741130
- [14] M.B. Priestley (1980). - State-dependent models : a general approach to nonlinear time series, J. Time Ser. Anal., 1, 47-71. Zbl0496.62076MR605574
- [15] P.M. Robinson (1977). - The estimation of a non-linear moving average model, Stochastic Processes and their Applications, 5, 81-90. Zbl0357.62072MR428654
- [16] R. Roy et J. Pellerin (1982). - On long term air quality trends and intervention analysis, Atmospheric Environment, 16, 161-169.
- [17] L.E. Scales (1985). — Introduction to non-linear optimization, MacMillan, London.
- [18] T. Terasvirta et R. Luukkonen (1985). — Choosing between linear and threshold autoregressive models, In O.D. Anderson (Ed.), Time Series Analysis : Theory and Practice, 7, North-Holland, Amsterdam, pp. 129-137.
- [19] H. Tong (1978). - On a threshold model, In C.H. Chen (Ed.), Pattern recognition and signal processing, Sythoff and Noordhoff, Alphen aan den Rijn, pp 575-586.
- [20] H. Tong (1983). — Threshold models in non-linear time series analysis, Lecture Notes in Statistics21, Springer-Verlag, New York. Zbl0527.62083
- [21] H. Tong et K.S. Lim (1980). - Threshold autoregression, limit cycles and cyclical data (with discussion, J. Roy. Statist. Soc. Ser. B, 42, 245-292. Zbl0473.62081
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.