Resolution blowups, spectral convergence and quasi-asymptotically conical spaces
Rafe Mazzeo[1]
- [1] Department of Mathematics, Stanford University, Stanford, CA 94305
Journées Équations aux dérivées partielles (2006)
- page 1-16
- ISSN: 0752-0360
Access Full Article
topHow to cite
topMazzeo, Rafe. "Resolution blowups, spectral convergence and quasi-asymptotically conical spaces." Journées Équations aux dérivées partielles (2006): 1-16. <http://eudml.org/doc/10626>.
@article{Mazzeo2006,
affiliation = {Department of Mathematics, Stanford University, Stanford, CA 94305},
author = {Mazzeo, Rafe},
journal = {Journées Équations aux dérivées partielles},
language = {eng},
month = {6},
pages = {1-16},
publisher = {Groupement de recherche 2434 du CNRS},
title = {Resolution blowups, spectral convergence and quasi-asymptotically conical spaces},
url = {http://eudml.org/doc/10626},
year = {2006},
}
TY - JOUR
AU - Mazzeo, Rafe
TI - Resolution blowups, spectral convergence and quasi-asymptotically conical spaces
JO - Journées Équations aux dérivées partielles
DA - 2006/6//
PB - Groupement de recherche 2434 du CNRS
SP - 1
EP - 16
LA - eng
UR - http://eudml.org/doc/10626
ER -
References
top- G. Carron, Cohomologie les variétés QALE, preprint (2005). arXiv:math.DG/0501290
- J. Cheeger, Spectral geometry of singular Riemannian spaces, J. Diff. Geo. 18 (1984) 575-657. Zbl0529.58034MR730920
- J. Cheeger and T. Colding, On the structure of spaces with Ricci curvature bounded below, I, II and III, J. Diff. Geo.; I 46 No. 3 (1997) 406-480; II 54 No. 2 (2000) 13-36; III 54 No. 2 (2000) 37-74. Zbl1027.53043MR1484888
- A. Degeratu and R. Mazzeo, In preparation.
- Y. Ding, Heat kernels and Green’s functions on limit spaces, Comm. Anal. Geom. 10 No. 3 (2002) 475-514. Zbl1018.58013
- J. Gil and G. Mendoza Adjoints of elliptic cone operators, Amer. Jour. Math. 125 No. 2 (2003) 357–408. Zbl1030.58012MR1963689
- D. Joyce, Compact manifolds with special holonomy, Oxford University Press (2000). Zbl1027.53052MR1787733
- J. Lott, Collapsing and differential form Laplacian: the case of a singular limit space, arXiv:math.DG/0201289 Zbl1072.58023
- R. Mazzeo, Elliptic theory of differential edge operators I, Comm. PDE 16 No. 10 (1991) 1615-1664. Zbl0745.58045MR1133743
- P. McDonald, The Laplacian for spaces with cone-like singularities, Thesis, MIT (1990).
- R. Melrose, The Atiyah-Patodi-Singer index theorem, AK Peters, Wellesley (1993). Zbl0796.58050MR1348401
- R. Melrose, Pseudodifferential operators, corners and singular limits, Proceedings of the International Congress of Mathematicians, Vol. I, II (Kyoto, 1990), 217–234, Math. Soc. Japan, Tokyo, 1991. Zbl0743.58033MR1159214
- V. Nazaikinskii, A. Savin, B.-W. Schulze, B. Sternin, Elliptic theory on singular manifolds Diff and Int. Eqns. and their App., 7. Chapman & Hall, CRC, Boca Raton, FL, 2006. Zbl1084.58007MR2167050
- V. Nistor, Pseudodifferential operators on non-compact manifolds and analysis on polyhedral domains in Spectral geometry of manifolds with boundary and decomposition of manifolds Contemp. Math., 366, Amer. Math. Soc., Providence, RI, 2005, 307–328. Zbl1091.58017MR2114493
- J. Rowlett, Spectral geometry and asymptotically conic convergence, Thesis, Stanford (2006). Zbl1160.58307
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.