On -harmonic functions

Thierry De Pauw[1]

  • [1] Université catholique de Louvain Département de mathématiques Chemin du cyclotron, 2 B-1348 Louvain-la-Neuve Belgique

Journées Équations aux dérivées partielles (2007)

  • page 1-11
  • ISSN: 0752-0360

How to cite

top

De Pauw, Thierry. "On $\infty $-harmonic functions." Journées Équations aux dérivées partielles (2007): 1-11. <http://eudml.org/doc/10629>.

@article{De2007,
affiliation = {Université catholique de Louvain Département de mathématiques Chemin du cyclotron, 2 B-1348 Louvain-la-Neuve Belgique},
author = {De Pauw, Thierry},
journal = {Journées Équations aux dérivées partielles},
language = {eng},
month = {6},
pages = {1-11},
publisher = {Groupement de recherche 2434 du CNRS},
title = {On $\infty $-harmonic functions},
url = {http://eudml.org/doc/10629},
year = {2007},
}

TY - JOUR
AU - De Pauw, Thierry
TI - On $\infty $-harmonic functions
JO - Journées Équations aux dérivées partielles
DA - 2007/6//
PB - Groupement de recherche 2434 du CNRS
SP - 1
EP - 11
LA - eng
UR - http://eudml.org/doc/10629
ER -

References

top
  1. G. Aronsson, M.G. Crandall, P. Juutinen, A tour of the theory of absolutely minimizing functions, Bull. Amer. Math. Soc. 41 (2004), 439-505 Zbl1150.35047MR2083637
  2. M.G. Crandall, L.C. Evans, A remark on infinity harmonic functions, Electron. J. Diff. Eqns. Conf. 06 (2001), 123-129 Zbl0964.35061MR1804769
  3. M.G. Crandall, H. Ishii, P.L. Lions, User’s guide to viscosity solutions of second-order partial differential equations, Bull. Amer. Math. Soc. 27 (1992), 1-67 Zbl0755.35015MR1118699
  4. L. D’Onofrio, F. Giannetti, T. Iwaniec, J. Manfredi, T. Radice, Divergence forms of the infinity-laplacian, Publ. Mat. 50 (2006), 229-248 Zbl05207316MR2325020
  5. L.C. Evans, Estimates for smooth absolutely minimizing Lipschitz extensions, Electron. J. Diff. Eqns. 1993 (1993), 1-9 Zbl0809.35032MR1241488
  6. L.C. Evans, Y. Yu, Various properties of solutions of the infinity-laplacian equation, Comm. Partial Differential Equations 30 (2005), 1401-1428 Zbl1123.35018MR2180310
  7. H. Federer, Geometric Measure Theory, 153 (1969), Springer-Verlag, New York Zbl0176.00801MR257325
  8. O. Savin, C 1 regularity for infinity-harmonic functions in two dimensions, Arch. Ration. Mech. Anal. 176 (2005), 351-361 Zbl1112.35070MR2185662
  9. Y. Yu, A remark on C 2 infinity-harmonic functions, Electron. J. Diff. Eqns. 2006 (2006), 1-4 Zbl1113.35026

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.