On -harmonic functions
- [1] Université catholique de Louvain Département de mathématiques Chemin du cyclotron, 2 B-1348 Louvain-la-Neuve Belgique
Journées Équations aux dérivées partielles (2007)
- page 1-11
- ISSN: 0752-0360
Access Full Article
topHow to cite
topDe Pauw, Thierry. "On $\infty $-harmonic functions." Journées Équations aux dérivées partielles (2007): 1-11. <http://eudml.org/doc/10629>.
@article{De2007,
affiliation = {Université catholique de Louvain Département de mathématiques Chemin du cyclotron, 2 B-1348 Louvain-la-Neuve Belgique},
author = {De Pauw, Thierry},
journal = {Journées Équations aux dérivées partielles},
language = {eng},
month = {6},
pages = {1-11},
publisher = {Groupement de recherche 2434 du CNRS},
title = {On $\infty $-harmonic functions},
url = {http://eudml.org/doc/10629},
year = {2007},
}
TY - JOUR
AU - De Pauw, Thierry
TI - On $\infty $-harmonic functions
JO - Journées Équations aux dérivées partielles
DA - 2007/6//
PB - Groupement de recherche 2434 du CNRS
SP - 1
EP - 11
LA - eng
UR - http://eudml.org/doc/10629
ER -
References
top- G. Aronsson, M.G. Crandall, P. Juutinen, A tour of the theory of absolutely minimizing functions, Bull. Amer. Math. Soc. 41 (2004), 439-505 Zbl1150.35047MR2083637
- M.G. Crandall, L.C. Evans, A remark on infinity harmonic functions, Electron. J. Diff. Eqns. Conf. 06 (2001), 123-129 Zbl0964.35061MR1804769
- M.G. Crandall, H. Ishii, P.L. Lions, User’s guide to viscosity solutions of second-order partial differential equations, Bull. Amer. Math. Soc. 27 (1992), 1-67 Zbl0755.35015MR1118699
- L. D’Onofrio, F. Giannetti, T. Iwaniec, J. Manfredi, T. Radice, Divergence forms of the infinity-laplacian, Publ. Mat. 50 (2006), 229-248 Zbl05207316MR2325020
- L.C. Evans, Estimates for smooth absolutely minimizing Lipschitz extensions, Electron. J. Diff. Eqns. 1993 (1993), 1-9 Zbl0809.35032MR1241488
- L.C. Evans, Y. Yu, Various properties of solutions of the infinity-laplacian equation, Comm. Partial Differential Equations 30 (2005), 1401-1428 Zbl1123.35018MR2180310
- H. Federer, Geometric Measure Theory, 153 (1969), Springer-Verlag, New York Zbl0176.00801MR257325
- O. Savin, regularity for infinity-harmonic functions in two dimensions, Arch. Ration. Mech. Anal. 176 (2005), 351-361 Zbl1112.35070MR2185662
- Y. Yu, A remark on infinity-harmonic functions, Electron. J. Diff. Eqns. 2006 (2006), 1-4 Zbl1113.35026
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.