Étude d'un modèle factoriel d'analyse de la variance comme modèle linéaire généralisé

K. M. M. Dorkenoo; J.-R. Mathieu

Revue de Statistique Appliquée (1993)

  • Volume: 41, Issue: 2, page 43-57
  • ISSN: 0035-175X

How to cite


Dorkenoo, K. M. M., and Mathieu, J.-R.. "Étude d'un modèle factoriel d'analyse de la variance comme modèle linéaire généralisé." Revue de Statistique Appliquée 41.2 (1993): 43-57. <http://eudml.org/doc/106333>.

author = {Dorkenoo, K. M. M., Mathieu, J.-R.},
journal = {Revue de Statistique Appliquée},
language = {fre},
number = {2},
pages = {43-57},
publisher = {Société de Statistique de France},
title = {Étude d'un modèle factoriel d'analyse de la variance comme modèle linéaire généralisé},
url = {http://eudml.org/doc/106333},
volume = {41},
year = {1993},

AU - Dorkenoo, K. M. M.
AU - Mathieu, J.-R.
TI - Étude d'un modèle factoriel d'analyse de la variance comme modèle linéaire généralisé
JO - Revue de Statistique Appliquée
PY - 1993
PB - Société de Statistique de France
VL - 41
IS - 2
SP - 43
EP - 57
LA - fre
UR - http://eudml.org/doc/106333
ER -


  1. [1] Aitchison J., Silvey S.D. (1958). Maximum likelihood estimation of parameters subject to restrictions. Annals of Math. Stat.29, pp. 813 Zbl0092.36704MR94873
  2. [2] Allen D.M. (1971). Mean square error of prediction as criterion selecting variables. Technometrics13, pp. 469 Zbl0219.62013
  3. [3] Allen D.M. (1974). The relationship between variable selection and data augmentation and method of prediction. Technometrics16, pp. 125 Zbl0286.62044MR343481
  4. [4] Boik R.J. (1986). Testing the rank of a matrix with applications to the analysis of interaction in ANOVA. J.A.S.A.81, pp. 243 Zbl0587.62108MR830588
  5. [5] Boik R.J. (1989). Reduced-rank models for interaction in unequally replicated two-way classifications. Journal of Multivariate Analysis28, pp. 69 Zbl0665.62071MR996985
  6. [6] Bradu D., Gabriel K.R. (1974). Simultaneous statistical inference on interactions in two-way analysis of variance. J.A.S.A.68, pp. 428 Zbl0291.62087MR359192
  7. [7] Chadoeuf J., Denis J.B. (1991). Asymptotic variances for the multiplicative interaction model. Journal of Applied Statistics, Vol. 18, N° 3, pp. 331 
  8. [8] Corsten L.C.A., Van Eijsbergen A.C. (1972). Multiplicative effects in two-way analysis of variance. Statistica Neerlandica26, pp. 61 Zbl0245.62068MR320622
  9. [9] Denis J.-B. (1991). Ajustements de modèles linéaires et bilinéaires sous contraintes linéaires avec données manquantes. R.S.A. Vol. 39 N° 2, pp. 5- 24 
  10. [10] Dorkenoo K.M.M. (1992). Etude de modèles avec interaction multiplicative en analyse de la variance. Thèse N.R. Toulouse-France 
  11. [11] Falguerolles A. de, Francis B.(1992). Algorithmic Approaches for Fitting Bilinear Models Computational Statistics, Physica-Verlag, pp. 77- 82 
  12. [121 Gabriel K.R. (1978). Least squares approximation of matrices by additive and multiplicative models. J.R.S.S. série B, 40, pp. 186 Zbl0393.62019MR517440
  13. [13] Gollob H.F. (1968) A statistical model wich combines features of factor analysis and anova techniques. Psychometrika33, pp. 73 Zbl0167.48601MR221658
  14. [14] Goodman L.A., Haberman S. (1990). The analysis of non-additivity in two-way analysis of variance. J.A.S.A.85, pp. 139 Zbl0702.62064MR1137360
  15. [15] Hegemann V.J., Johnson D.E. (1976) On analyzing two-way analysis of variance data with interaction. Technometrics18, pp. 273 Zbl0342.62045
  16. [16] Johnson D.E., Graybill F.A. (1972). On analysis of a two-may model with interaction and no replication. J.A.S.A.67, pp. 862 Zbl0254.62042MR400566
  17. [17] Johnson D.E. (1976). Some new multiple comparison procedures for two-way anova model with interaction. Biometrics32, pp. 929 Zbl0343.62064MR445732
  18. [18] Krishnaiah P.R., Yochmowitz M.G. (1980). Inference of interaction in two-way classification model. Handbook of Statistics, Vol. 1, pp. 973 Zbl0462.62054
  19. [19] Mallows C.L. (1973). Some comments on Cp. Technometrics15, pp. 661 Zbl0269.62061
  20. [20] Mandel J. (1969). The partitioning of interaction in analysis of variance. Journal of Research - National Bureau of Standard, B.73 Zbl0195.17404MR251862
  21. [21] Mandel J. (1970). Distribution of eigenvalues of covariance matrices of residuals in analysis of variance. Journal of Research - National Bureau of Standard, B.74, pp. 149 Zbl0213.44201MR273747
  22. [22] Mandel J. (1971). A new analysis of variance model for non-additive data. Technometrics13, pp. 1 Zbl0216.48104
  23. [23] Mathieu J.R. (1981). Tests of χ2 in the generalized linear model. Statistics Vol. 12, 4, pp. 509 Zbl0514.62080
  24. [24] Nelder J.A., Wedderburn R.W.M. (1972). Generalized linear models. J.R.S.S. série A, 135, pp. 370 
  25. [25] Robert C. (1982). Propriétés optimales de certains estimateurs d'interaction en analyse de la variance. Thèse 3e cycle Grenoble, France 
  26. [26] Schuurmann F.J., Krischnaiah P.R., Chattopadhyay (1973). On the distributions of the ratios of the extreme roots to the trace of the Wishart matrix. Journal of Multivariate Analysis3, pp. 445 Zbl0286.62031MR331644
  27. [27] Tukey J.W. (1949). One degree of freedom for non-additivity. Biometrics Vol. 5, pp. 232 
  28. [28] Williams E.J. (1952). The interpretation of interactions in factorials experiments. Biometrika39, pp. 65 Zbl0046.36105MR50245

NotesEmbed ?


You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.


Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.