Étude d'un modèle factoriel d'analyse de la variance comme modèle linéaire généralisé
K. M. M. Dorkenoo; J.-R. Mathieu
Revue de Statistique Appliquée (1993)
- Volume: 41, Issue: 2, page 43-57
- ISSN: 0035-175X
Access Full Article
topHow to cite
topDorkenoo, K. M. M., and Mathieu, J.-R.. "Étude d'un modèle factoriel d'analyse de la variance comme modèle linéaire généralisé." Revue de Statistique Appliquée 41.2 (1993): 43-57. <http://eudml.org/doc/106333>.
@article{Dorkenoo1993,
author = {Dorkenoo, K. M. M., Mathieu, J.-R.},
journal = {Revue de Statistique Appliquée},
language = {fre},
number = {2},
pages = {43-57},
publisher = {Société de Statistique de France},
title = {Étude d'un modèle factoriel d'analyse de la variance comme modèle linéaire généralisé},
url = {http://eudml.org/doc/106333},
volume = {41},
year = {1993},
}
TY - JOUR
AU - Dorkenoo, K. M. M.
AU - Mathieu, J.-R.
TI - Étude d'un modèle factoriel d'analyse de la variance comme modèle linéaire généralisé
JO - Revue de Statistique Appliquée
PY - 1993
PB - Société de Statistique de France
VL - 41
IS - 2
SP - 43
EP - 57
LA - fre
UR - http://eudml.org/doc/106333
ER -
References
top- [1] Aitchison J., Silvey S.D. (1958). Maximum likelihood estimation of parameters subject to restrictions. Annals of Math. Stat.29, pp. 813 Zbl0092.36704MR94873
- [2] Allen D.M. (1971). Mean square error of prediction as criterion selecting variables. Technometrics13, pp. 469 Zbl0219.62013
- [3] Allen D.M. (1974). The relationship between variable selection and data augmentation and method of prediction. Technometrics16, pp. 125 Zbl0286.62044MR343481
- [4] Boik R.J. (1986). Testing the rank of a matrix with applications to the analysis of interaction in ANOVA. J.A.S.A.81, pp. 243 Zbl0587.62108MR830588
- [5] Boik R.J. (1989). Reduced-rank models for interaction in unequally replicated two-way classifications. Journal of Multivariate Analysis28, pp. 69 Zbl0665.62071MR996985
- [6] Bradu D., Gabriel K.R. (1974). Simultaneous statistical inference on interactions in two-way analysis of variance. J.A.S.A.68, pp. 428 Zbl0291.62087MR359192
- [7] Chadoeuf J., Denis J.B. (1991). Asymptotic variances for the multiplicative interaction model. Journal of Applied Statistics, Vol. 18, N° 3, pp. 331
- [8] Corsten L.C.A., Van Eijsbergen A.C. (1972). Multiplicative effects in two-way analysis of variance. Statistica Neerlandica26, pp. 61 Zbl0245.62068MR320622
- [9] Denis J.-B. (1991). Ajustements de modèles linéaires et bilinéaires sous contraintes linéaires avec données manquantes. R.S.A. Vol. 39 N° 2, pp. 5- 24
- [10] Dorkenoo K.M.M. (1992). Etude de modèles avec interaction multiplicative en analyse de la variance. Thèse N.R. Toulouse-France
- [11] Falguerolles A. de, Francis B.(1992). Algorithmic Approaches for Fitting Bilinear Models Computational Statistics, Physica-Verlag, pp. 77- 82
- [121 Gabriel K.R. (1978). Least squares approximation of matrices by additive and multiplicative models. J.R.S.S. série B, 40, pp. 186 Zbl0393.62019MR517440
- [13] Gollob H.F. (1968) A statistical model wich combines features of factor analysis and anova techniques. Psychometrika33, pp. 73 Zbl0167.48601MR221658
- [14] Goodman L.A., Haberman S. (1990). The analysis of non-additivity in two-way analysis of variance. J.A.S.A.85, pp. 139 Zbl0702.62064MR1137360
- [15] Hegemann V.J., Johnson D.E. (1976) On analyzing two-way analysis of variance data with interaction. Technometrics18, pp. 273 Zbl0342.62045
- [16] Johnson D.E., Graybill F.A. (1972). On analysis of a two-may model with interaction and no replication. J.A.S.A.67, pp. 862 Zbl0254.62042MR400566
- [17] Johnson D.E. (1976). Some new multiple comparison procedures for two-way anova model with interaction. Biometrics32, pp. 929 Zbl0343.62064MR445732
- [18] Krishnaiah P.R., Yochmowitz M.G. (1980). Inference of interaction in two-way classification model. Handbook of Statistics, Vol. 1, pp. 973 Zbl0462.62054
- [19] Mallows C.L. (1973). Some comments on Cp. Technometrics15, pp. 661 Zbl0269.62061
- [20] Mandel J. (1969). The partitioning of interaction in analysis of variance. Journal of Research - National Bureau of Standard, B.73 Zbl0195.17404MR251862
- [21] Mandel J. (1970). Distribution of eigenvalues of covariance matrices of residuals in analysis of variance. Journal of Research - National Bureau of Standard, B.74, pp. 149 Zbl0213.44201MR273747
- [22] Mandel J. (1971). A new analysis of variance model for non-additive data. Technometrics13, pp. 1 Zbl0216.48104
- [23] Mathieu J.R. (1981). Tests of χ2 in the generalized linear model. Statistics Vol. 12, 4, pp. 509 Zbl0514.62080
- [24] Nelder J.A., Wedderburn R.W.M. (1972). Generalized linear models. J.R.S.S. série A, 135, pp. 370
- [25] Robert C. (1982). Propriétés optimales de certains estimateurs d'interaction en analyse de la variance. Thèse 3e cycle Grenoble, France
- [26] Schuurmann F.J., Krischnaiah P.R., Chattopadhyay (1973). On the distributions of the ratios of the extreme roots to the trace of the Wishart matrix. Journal of Multivariate Analysis3, pp. 445 Zbl0286.62031MR331644
- [27] Tukey J.W. (1949). One degree of freedom for non-additivity. Biometrics Vol. 5, pp. 232
- [28] Williams E.J. (1952). The interpretation of interactions in factorials experiments. Biometrika39, pp. 65 Zbl0046.36105MR50245
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.