Indice de redondance basé sur les rangs et inférence non paramétrique

R. Cléroux; A. Lazraq; Y. Lepage

Revue de Statistique Appliquée (1994)

  • Volume: 42, Issue: 2, page 79-98
  • ISSN: 0035-175X

How to cite

top

Cléroux, R., Lazraq, A., and Lepage, Y.. "Indice de redondance basé sur les rangs et inférence non paramétrique." Revue de Statistique Appliquée 42.2 (1994): 79-98. <http://eudml.org/doc/106354>.

@article{Cléroux1994,
author = {Cléroux, R., Lazraq, A., Lepage, Y.},
journal = {Revue de Statistique Appliquée},
language = {fre},
number = {2},
pages = {79-98},
publisher = {Société de Statistique de France},
title = {Indice de redondance basé sur les rangs et inférence non paramétrique},
url = {http://eudml.org/doc/106354},
volume = {42},
year = {1994},
}

TY - JOUR
AU - Cléroux, R.
AU - Lazraq, A.
AU - Lepage, Y.
TI - Indice de redondance basé sur les rangs et inférence non paramétrique
JO - Revue de Statistique Appliquée
PY - 1994
PB - Société de Statistique de France
VL - 42
IS - 2
SP - 79
EP - 98
LA - fre
UR - http://eudml.org/doc/106354
ER -

References

top
  1. Billingsley P. (1968). Convergence of probability measure. John Wiley and Sons, New York. Zbl0172.21201MR233396
  2. BMDP Statistical Software, W.J. Dixon, Chief Editor (1981). University of California Press, Berkeley. Zbl0549.62004
  3. Cléroux R., Lazraq A., Lepage Y. (1993). Vector correlation based on ranks and a nonparametric test of independence between vectors. Rapport de recherche, département de mathématiques et de statistique, Université de Montréal. Zbl0825.62304
  4. Conover W.J., Iman R.L. (1980). The rank transformation as a method of discrimination with some examples. Comm. in Statist., A9 (5), 465-487. Zbl0453.62044
  5. Conover W.J., Iman R.L. (1981). Rank transformation as a bridge between parametric and non parametric statistics. The American Statistician, 35, 124- 133. Zbl0468.62026
  6. Coxhead P. (1974). Mesuring the relationships between two sets of variables. Brit. Jour. Math. Stat. Psycho., 27, 205- 212. Zbl0316.62019MR391398
  7. Cramer E.M. (1974). A generalization of vector correlation and its relation to canonical correlation. Mult. Behav. Res., 9, 347- 352. 
  8. Cramer E.M., Nicewander W.A. (1979). Some symmetric invariant measures of multivariate association. Psychometrika, 44, 43-54. Zbl0419.62048MR529390
  9. Escoufier Y. (1973). Le traitement des variables vectorielles. Biometrics, 29, 751-760. MR334416
  10. Gleason T.C. (1976). On Redundancy in Canonical Analysis. Psychological Bulletin, 83, 1004-1006. 
  11. Hoeffding W. (1948). A class of statistics with asymptotically normal variables. Ann. Math. Statist., 19, 293-325. Zbl0032.04101MR26294
  12. Hotelling H. (1936). Relations between two sets of variables. Biometrika, 28, 321-377. Zbl0015.40705JFM62.0618.04
  13. Imhof P. (1961). Computing the loi of quadratic forms in normal variates. Biometrika, 48, 419-426. Zbl0136.41103MR137199
  14. Johnson N.L., Kotz S. (1970). Continuous univariate loi -2. Houghton Mifflin, Boston. 
  15. Koerts J., Abrahamse A.P.J. (1969). On the theory and application of the general linear model. Rotterdam University Press, Rotterdam. Zbl0225.62081MR370947
  16. Kshirsagar A.M. (1969). Correlation between two vector variables. JRSS, B, 31, 477-485. Zbl0186.52702
  17. Lazraq A., Cléroux R. (1988). Un algorithme pas à pas de sélection de variables en régression linéaire multivariée. Stat. Anal. Don., 13, 15- 18. MR984844
  18. Lazraq A., Cléroux R., Kiers H.A.L. (1992). Mesures de liaison vectorielle et généralisation de l'analyse canonique. Rev. Statistique Appliquée, XXXX(1), 23-35. Zbl0972.62523MR1174250
  19. Lazraq A., Cléroux R. (1992). Tests d'homogénéité entre indices de redondance pour des lois elliptiques. Rev. Statistique Appliquée, XXXX(3), 19-33. Zbl0972.62515MR1192532
  20. Lingoes J.C., Schönemann P.H. (1974). Alternative Measures of Fit for the Schönemann-Carroll Matrix Fitting Algorithm. Psychometrika, 39, 423- 427. Zbl0295.92022MR403195
  21. Masuyama M. (1939). Correlation between tensor quantities. Proc.Physico-Math. Soc. Japan, Series 3, 31, 638- 647. Zbl0023.06002MR927JFM65.0606.02
  22. Masuyama M. (1941). Correlation between two sets of complex vectors. Proc. Physico-Math. Soc. Japan, Series 3, 33, 918-924. Zbl0063.03830MR14660
  23. Puri M.L., Sen P.K. (1971). Nonparametric methods in multivariate analysis. John Wiley and Sons, New York. Zbl0237.62033MR298844
  24. Puri M.L., Sen P.K., Gokhale D.V. (1970). On a class of rank order tests of independence. Sankhya, A, 271-298. Zbl0246.62056
  25. Ramsay J.O., ten Berge, J., Styan G. (1984). Matrix correlation. Psychometrika, 49, 403 -423. Zbl0581.62048MR760205
  26. Robert P., Escoufier Y. (1976). A unifying tool for linear multivariate statistical methods : the RV-coefficient. Appl. Statis., 25, 257- 265. MR440801
  27. Roseboom N.W. (1965). Linear correlation between sets of variables. Psychometrika, 30, 57-71. Zbl0127.10302MR175205
  28. Roy R., Cléroux R. (1993). On vector cross-correlation in time series and application. To appear in the International Statistical Review, Vol. 61, No. 3. Zbl0826.62065
  29. Shaffer J.P., Gillo M.W. (1974). A multivariate extension of the correlation ratio. Educ. Psycho. Meas., 34, 521-524. 
  30. Stephens M. (1979). Vector correlation. Biometrika, 66, 41 -98. Zbl0402.62033MR529146
  31. Stewart D., Love W. (1968). A general canonical correlation index. Psycho. Bull., 70, 160-163. 
  32. Werner M., Tolls M.E., Hultin J.V., Mellecker J. (1970). Sex and Age Dependence of Serum Calcium, Inorganic Phosphorus, Total Protein and Albumin in a Large Ambulatory Population. Fifth International Congress on Automation, Advances in Automated Analysis, 2, 59-65. 

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.