Discrimination et régression par une méthode neuromimétique et par la méthode de segmentation CART : application à différentes données et comparaison des résultats
J.-P. Nakache; J. Vilain; B. Fertil
Revue de Statistique Appliquée (1996)
- Volume: 44, Issue: 4, page 19-40
- ISSN: 0035-175X
Access Full Article
topHow to cite
topNakache, J.-P., Vilain, J., and Fertil, B.. "Discrimination et régression par une méthode neuromimétique et par la méthode de segmentation CART : application à différentes données et comparaison des résultats." Revue de Statistique Appliquée 44.4 (1996): 19-40. <http://eudml.org/doc/106403>.
@article{Nakache1996,
author = {Nakache, J.-P., Vilain, J., Fertil, B.},
journal = {Revue de Statistique Appliquée},
language = {fre},
number = {4},
pages = {19-40},
publisher = {Société de Statistique de France},
title = {Discrimination et régression par une méthode neuromimétique et par la méthode de segmentation CART : application à différentes données et comparaison des résultats},
url = {http://eudml.org/doc/106403},
volume = {44},
year = {1996},
}
TY - JOUR
AU - Nakache, J.-P.
AU - Vilain, J.
AU - Fertil, B.
TI - Discrimination et régression par une méthode neuromimétique et par la méthode de segmentation CART : application à différentes données et comparaison des résultats
JO - Revue de Statistique Appliquée
PY - 1996
PB - Société de Statistique de France
VL - 44
IS - 4
SP - 19
EP - 40
LA - fre
UR - http://eudml.org/doc/106403
ER -
References
top- Breiman L., Friedman J.H., Ohlsen R.A., Stone C.J., Classification and Regression Trees. Belmont, 1984. Zbl0541.62042
- Burke H.B., Rosen D.B., Goodman P.H., Comparing Artificial neural networks to other statistical methods for medical outcome prodiction. In proceeding : IEEE Int. Conference on Neural Networks, Orlando, F1, p. 2213, 1994.
- CART, A software classification and regression trees. Yorshire Ct. Lafayette, California: California Statistical Software, inc., 1984. MR726392
- Celeux J.P., Nakache J.-P., Analyse discriminante sur variables qualitatives. Polytechnica Ed, 1994.
- Cichocki A., Unbehauen R., Neural Networks for Optimization and Signal Processing, p. 526. Stuttgart: Wiley, J. & Sons Ltd & Teubner, B.G., 1993. Zbl0824.68101
- Coustere C., Fertil B., Un nouvel outil pour l'analyse de données : les réseaux de neurones. Applications en microbiologie, Bulletin de la société Française de Microbiologie7, 10, 1992.
- Davalo E., Naim P., Des réseaux de neurones, 2 édition, p. 232. Paris: Editions Eyrolles, 1993.
- Fertil B., Vilain J., Multiple Learning Sessions to Improve Predictions and Evaluate Reliability of Neural Networks. In proceeding : 4th International conference on Artificial Neural Networks, Sorrento, Italy, 1994, p. 1323.
- Flamant Y., Lacaine F., Hay J.M., Maillard J.N., Syndromes douloureux aigus de l'abdomen. Aide au diagnostic par ordinateur, Nouvelle Presse Médicale10, 3367, 1981.
- Gallinari P., Thiria S., Badran F., Fogelman-Soulie F., On the relations between discriminant analysis and multilayer perceptrons, in Neural Networks (USA), vol. 4, n°3, p. 349 -69, 1991.
- Gernoth K.A., Clark J.W., Neural networks that learn to predict probabilities : Global models of nuclear stability and decay, Neural Networks8, 291, 1995.
- Gueguen A., Nakache J.-P., Méthode de discrimination basée sur la construction d'un arbre de décision binaire, Rev. Stat. Appl., 36, 19, 1988.
- Gueguen A., Nicolau J., Nakache J.-P., Utilisation des réseaux probabilistes en analyse discriminante sur variables qualitatives, Rev. Stat. Appl., 1996.
- Harrison D., Rubinfeld D.L., Hedonic prices and the demand for clean air, J. Envir. Econ. and Management5, 81, 1978. Zbl0375.90023
- Jepson B., Collins A., Evans A., Post-neural network procedure to determine expected prediction values and their confidence limits, Neural Computing & applications1, 224, 1993.
- Kass G.V., An exploratory technique for investigating large quantities of categorical data, Applied Statistics, 29, 119, 1980.
- Katz A.S., Katz S., Lowe N., Fundamentals of the bootstrap based analysis of neural network's accuracy. In proceeding : WCNN, San Diego, USA, 1994, p. 673.
- Le Cun Y., Learning Scheme for asymmetric threshold networks. In proceeding : Cognitiva 85, Paris, France, p. 599, 1985.
- Leon M.A., Binary response forecasting : comparaison between neural networks and logistic regression analysis, in proc. of WCN 2, 244, 1994.
- Liu Y., Unbiased Estimate of Generalization Error and Model Selection in Neural Network, Neural Networks8, 215, 1995.
- Martin C.E., Rogers S.K., Ruck D.W., Neural network Bayes error estimation, in proc. of IEEE ICNN 305, 1994.
- Mascioli F.M.F., Martinelli G., Lazzaro D., comparison of Constructive Algorithms for Neural Networks, in proc. of ICANN 1, 731, 1994.
- Masters T., Practical neural network recipes in C++, p. 493. San Diego, CA, Academic Press, Inc, 1993. Zbl0818.68049MR1214791
- Masters T., Signal and image processing with neural networks, a C++ sourcebook. New York, Wiley & sons, inc., 1994.
- Mcclelland J.L., Rumelhart D.E., Explorations in parallel distributed processing. A handbook of models, programs and exercises, p. 344. Cambridge, MA, MIT Press, 1988.
- Michie D., Spiegelmalter D.J., Taylor C.C., Machine learning Neural and Statistical Classification, Ed. Ellis HorwoodN.Y., 1994. Zbl0827.68094
- Morgan J.A., Messenger R.C., A modal search technique for predictive nominal scale multivariate analysis, J. Amer. Statis. Ass.67, 768, 1972.
- Morgan J.A., Sonquist J.N., Problems in the analysis of survey data and a proposal, J. Amer. Statist. Ass.58, 415, 1963. Zbl0114.10103
- Nakache J.P., Golmard J.L., Gueguen A., Comparison of the performance of the conditional independence based model and the CART tree-structured discrimination model applied to a large medical data set. In proceeding : MIE 93, Jérusalem (Israël), 1993.
- Nix D.A., Weigend A.S., Estimating the Mean and Variance of the Target Probability Distribution, in proc. of IEEE ICNN 55, 1994.
- Paass G., Assessing predictive accuracy by the bootstrap algorithm. In proceeding, 4th International conference on Artificial Neural Networks, Sorrento, Italy, p. 823, 1994.
- Perantonis S.J., Karras D.A., An efficient constrained learning algorithm with momentum acceleration, Neural Networks8, 237, 1995.
- Ripley B.D., Statistical aspects of neural networks. In : O.E. Barndorff-Nielsen, J.L. Jensen, and W.S. Kendall (ed.), Networks and Chaos — Statistical and Probabilistic Aspects, p. 40, Chapman & Hall, 1993. Zbl0825.68531
- Ripley B.D., Network methods in statistics. In : F.P. Kelly (ed.), Probability, Statistics, Optimisation, a Tribute to Peter Whittle, p. 241, Wiley, 1994a. Zbl0856.62007MR1320756
- Ripley B.D., Neural networks and flexible regression and discrimination. In : K.V. Mardia (ed.), Advances in Statistics2, p. 39. Carfax: Abingdon, 1994b. Zbl0815.62037
- Ruck D.W., Rogers S.K., Kabrisky M., Oxley M.E., Suter B.W., The multilayer perceptron as an approximation to a Bayes optimal discriminant function, IEEE Transactions on Neural Networks1, 296, 1990.
- Rumelhart D.E., Hinton G.E., Williams R.J., Learning internal representations by error propagation. In : D. E. Rumelhart and J.L. McClelland (ed.), Parallel distributed processing : explorations in the microstructure of cognition, Vol. 1, Fondations, p. 318. Cambridge, MA, MIT Press, 1986.
- Seroussi B., ARC et AURC, Comparison of discrimination methods; application to the acute abdominal pain diagnosis. In : D. Tfistsis (ed.), Lecture notes in médical informatics, Objective medical decision making, Vol. 28, p. 12: Springer-Verlag, 1985.
- Siegel S., Nonparametric statistics for the behavioral sciences, McGraw-Hill Intern. Book Company, 1956. Zbl0071.35301
- Shadmehr R., D'Argenio D.Z., A comparison of a neural network based estimator and two statistical estimators in a sparse and noisy data environment, in proc. of IJCNN 1, 289, 1990.
- SPAD.N., Système portable dAnalyse des Données - procédure NEURO. Saint-Mandé, CISIA, 1993.
- SPAD.S., Système Portable d'Analyse des Données - Segmentation. Saint-Mandé: CISIA, 1993.
- Srivastava A.N., Weigend A.S., Computing the probability density in connectionist regression, in proc. of WCNN 2, 311, 1994.
- Weisbuch G., Dynamique des systèmes complexes, p. 212. Paris, InterEditions & Editions du CNRS, 1989.
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.