Wavelet shrinkage of itch response data

Robert C. Morgan; G. P. Nason

Revue de Statistique Appliquée (1999)

  • Volume: 47, Issue: 3, page 81-98
  • ISSN: 0035-175X

How to cite

top

Morgan, Robert C., and Nason, G. P.. "Wavelet shrinkage of itch response data." Revue de Statistique Appliquée 47.3 (1999): 81-98. <http://eudml.org/doc/106466>.

@article{Morgan1999,
author = {Morgan, Robert C., Nason, G. P.},
journal = {Revue de Statistique Appliquée},
language = {eng},
number = {3},
pages = {81-98},
publisher = {Société française de statistique},
title = {Wavelet shrinkage of itch response data},
url = {http://eudml.org/doc/106466},
volume = {47},
year = {1999},
}

TY - JOUR
AU - Morgan, Robert C.
AU - Nason, G. P.
TI - Wavelet shrinkage of itch response data
JO - Revue de Statistique Appliquée
PY - 1999
PB - Société française de statistique
VL - 47
IS - 3
SP - 81
EP - 98
LA - eng
UR - http://eudml.org/doc/106466
ER -

References

top
  1. [1] Burrus S.L., Gopinath R.A. (1997). Wavelets: introduction to wavelets and wavelet transforms. Prentice Hall, Englewood Cliffs, NJ. 
  2. [2] Coifman R.R., Donoho D.L. (1995). Translation-invariant de-noising. In A. Antoniadis and G. Oppenheim, editors, Wavelets and Statistics: Proceedings of the XVth Rencontres Franco-Belges des Statisticiens., volume 103 of Lecture Notes in Statistics. Springer-Verlag. Zbl0866.94008MR1364669
  3. [3] Daubechies I. (1992). Ten Lectures on Wavelets. SIAM, Philadelphia. Zbl0776.42018MR1162107
  4. [4] Donoho D.L., Johnstone I.M. (1994). Ideal spatial adaptation by wavelet shrinkage. Biometrika, 81(3): 425-55. Zbl0815.62019MR1311089
  5. [5] Donoho D.L., Johnstone I.M. (1995). Adapting to unknown smoothness via wavelet shrinkage. J. Am. Statist. Ass., 90: 1200- 1224. Zbl0869.62024MR1379464
  6. [6] Donoho D.L., Johnstone I.M., Kerkyacharian G., Picard D. (1995). Wavelet shrinkage: asymptopia? (with discussion. J. R. Statist. Soc.B, 57: 301-337. Zbl0827.62035MR1323344
  7. [7] Harris R. (1967). Iontophoresis. In S. Licht, editor, Therapeutic Electricity and Ultraviolet Radiation, pages 156- 178. Elizabeth Licht, New Haven. 
  8. [8] Johnstone I.M., Silverman B.W. (1997). Wavelet threshold estimators for data with correlated noise. J. R. Statist. Soc.B, 59: 319-351. Zbl0886.62044MR1440585
  9. [9] Kolaczyk E. (1998). Wavelet shrinkage estimation of certain Poisson intensity signals using corrected thresholds. (submitted for publication). Zbl0927.62081MR1678884
  10. [10] Kovac A. (1998). Wavelet thresholding for unequally spaced data. PhD thesis, Department of Mathematics, University of Bristol, Bristol, UK. 
  11. [11] Mallat S.G. (1989). A theory for multiresolution signal decomposition: the wavelet representation. IEEE Transactions on Pattern Analysis and MAchine Intelligence, 11(7): 674- 693. Zbl0709.94650
  12. [12] Meyer Y. (1992). Wavelets and Operators. Cambridge University Press, Cambridge. Zbl0776.42019MR1228209
  13. [13] Nason G.P., Silverman B.W. (1994). The discrete wavelet transform in s. Journal of Computational and Graphical Statistics, 3: 163-91. 
  14. [14] Spokoiny V.G. (1998). Image denoising: pointwise adaptive approach. Technical report, Weierstrass Institute for Applied Analysis and Stochastics. Zbl1018.62047

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.