Wavelet shrinkage of itch response data
Revue de Statistique Appliquée (1999)
- Volume: 47, Issue: 3, page 81-98
- ISSN: 0035-175X
Access Full Article
topHow to cite
topMorgan, Robert C., and Nason, G. P.. "Wavelet shrinkage of itch response data." Revue de Statistique Appliquée 47.3 (1999): 81-98. <http://eudml.org/doc/106466>.
@article{Morgan1999,
author = {Morgan, Robert C., Nason, G. P.},
journal = {Revue de Statistique Appliquée},
language = {eng},
number = {3},
pages = {81-98},
publisher = {Société française de statistique},
title = {Wavelet shrinkage of itch response data},
url = {http://eudml.org/doc/106466},
volume = {47},
year = {1999},
}
TY - JOUR
AU - Morgan, Robert C.
AU - Nason, G. P.
TI - Wavelet shrinkage of itch response data
JO - Revue de Statistique Appliquée
PY - 1999
PB - Société française de statistique
VL - 47
IS - 3
SP - 81
EP - 98
LA - eng
UR - http://eudml.org/doc/106466
ER -
References
top- [1] Burrus S.L., Gopinath R.A. (1997). Wavelets: introduction to wavelets and wavelet transforms. Prentice Hall, Englewood Cliffs, NJ.
- [2] Coifman R.R., Donoho D.L. (1995). Translation-invariant de-noising. In A. Antoniadis and G. Oppenheim, editors, Wavelets and Statistics: Proceedings of the XVth Rencontres Franco-Belges des Statisticiens., volume 103 of Lecture Notes in Statistics. Springer-Verlag. Zbl0866.94008MR1364669
- [3] Daubechies I. (1992). Ten Lectures on Wavelets. SIAM, Philadelphia. Zbl0776.42018MR1162107
- [4] Donoho D.L., Johnstone I.M. (1994). Ideal spatial adaptation by wavelet shrinkage. Biometrika, 81(3): 425-55. Zbl0815.62019MR1311089
- [5] Donoho D.L., Johnstone I.M. (1995). Adapting to unknown smoothness via wavelet shrinkage. J. Am. Statist. Ass., 90: 1200- 1224. Zbl0869.62024MR1379464
- [6] Donoho D.L., Johnstone I.M., Kerkyacharian G., Picard D. (1995). Wavelet shrinkage: asymptopia? (with discussion. J. R. Statist. Soc.B, 57: 301-337. Zbl0827.62035MR1323344
- [7] Harris R. (1967). Iontophoresis. In S. Licht, editor, Therapeutic Electricity and Ultraviolet Radiation, pages 156- 178. Elizabeth Licht, New Haven.
- [8] Johnstone I.M., Silverman B.W. (1997). Wavelet threshold estimators for data with correlated noise. J. R. Statist. Soc.B, 59: 319-351. Zbl0886.62044MR1440585
- [9] Kolaczyk E. (1998). Wavelet shrinkage estimation of certain Poisson intensity signals using corrected thresholds. (submitted for publication). Zbl0927.62081MR1678884
- [10] Kovac A. (1998). Wavelet thresholding for unequally spaced data. PhD thesis, Department of Mathematics, University of Bristol, Bristol, UK.
- [11] Mallat S.G. (1989). A theory for multiresolution signal decomposition: the wavelet representation. IEEE Transactions on Pattern Analysis and MAchine Intelligence, 11(7): 674- 693. Zbl0709.94650
- [12] Meyer Y. (1992). Wavelets and Operators. Cambridge University Press, Cambridge. Zbl0776.42019MR1228209
- [13] Nason G.P., Silverman B.W. (1994). The discrete wavelet transform in s. Journal of Computational and Graphical Statistics, 3: 163-91.
- [14] Spokoiny V.G. (1998). Image denoising: pointwise adaptive approach. Technical report, Weierstrass Institute for Applied Analysis and Stochastics. Zbl1018.62047
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.