Un critère de choix de la dimension dans la méthode SIR II

L. Ferré; A. F. Yao

Revue de Statistique Appliquée (1999)

  • Volume: 47, Issue: 4, page 33-46
  • ISSN: 0035-175X

How to cite

top

Ferré, L., and Yao, A. F.. "Un critère de choix de la dimension dans la méthode SIR II." Revue de Statistique Appliquée 47.4 (1999): 33-46. <http://eudml.org/doc/106468>.

@article{Ferré1999,
author = {Ferré, L., Yao, A. F.},
journal = {Revue de Statistique Appliquée},
language = {fre},
number = {4},
pages = {33-46},
publisher = {Société française de statistique},
title = {Un critère de choix de la dimension dans la méthode SIR II},
url = {http://eudml.org/doc/106468},
volume = {47},
year = {1999},
}

TY - JOUR
AU - Ferré, L.
AU - Yao, A. F.
TI - Un critère de choix de la dimension dans la méthode SIR II
JO - Revue de Statistique Appliquée
PY - 1999
PB - Société française de statistique
VL - 47
IS - 4
SP - 33
EP - 46
LA - fre
UR - http://eudml.org/doc/106468
ER -

References

top
  1. [1] Brieman L. & Friedman J. (1985), « Estimating Optimal Transformations for Multiple Regression and Correlation », Journal of the American Statistical Association, 80, 580-597. Zbl0594.62044MR803258
  2. [2] Cook R.D. & Weisberg S. (1991), Comment on «Sliced Inverse Regression for Dimension Reduction», K.C. Li, Journal of the American Statistical Association, 86, 328-332. MR1137117
  3. [3] Ferré L. (1997), «Dimension Choice for Sliced Inverse Regression Based on Ranks», Student, 2, 95-108. MR1408776
  4. [4] Ferré L. (1998), «Determining the Dimension in Sliced Inverse Regression and Related Methods», Journal of the American Statistical Association, 93, 132-140. Zbl0908.62049MR1614604
  5. [5] Friedman J. & Stuetzle W. (1981), « Projection Pursuit Regression », Journal of the American Statistical Association, 76, 817- 823. MR650892
  6. [6] Hall P. & Li K.C. (1993), « On Almost Linearity of Low Dimensional Projection from High Dimensional Data», The Annals of Statistics, 21, 867- 889. Zbl0782.62065MR1232523
  7. [7] Härdle W. & Stoker T.M. (1989), «Investigating Smooth Multiple Regression by the Method of Average Derivatives », Journal of the American Statistical Association, 84, 986-995. Zbl0703.62052MR1134488
  8. [8] Hastie T. & Tibshirani R. (1986), «General Additive Model», Statistical Science, 1, 297-318. Zbl0645.62068MR858512
  9. [9] Hsing T. & Carroll R.J. (1992), «An Asymptotic Theory for Sliced Inverse Regression », The Annals of Statistics, 20, 2, 1040-1061. Zbl0821.62019MR1165605
  10. [10] Kötter T. (1996), «An Asymptotic Result for Sliced Inverse Regression», Computational Statistics, 11, 113- 136. Zbl0933.62031MR1394544
  11. [11] Li K.C. (1991), «Sliced Inverse Regression for Dimension Reduction» (with comments, Journal of the American Statistical Association, 86, 316-327. Zbl0742.62044MR1137117
  12. [12] Li K.C. (1992), «On Principal Hessian Directions for Data Visualisation and Dimension Reduction : another application of Stein's lemma», Journal of the American Statistical Association, 87, 1025 -1039. Zbl0765.62003MR1209564
  13. [13] Magnus J.R. & Neudecker H. (1987), Matrix differential calculus with applications in statistics and econometrics, J. Wiley, 1987. Zbl0651.15001MR940471
  14. [14] Schott J.R. (1994), «Determing the Dimentionality in Sliced Inverse Regression», Journal of the American Statistical Association,89, 141-148. Zbl0791.62069MR1266291
  15. [15] Zuroff D.C. (1994), «Depressive Personality Styles and Adult Attachment Style», Journal of Personality Assesment, 63, 453-472. MR1292161

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.