Un critère de choix de la dimension dans la méthode SIR II
Revue de Statistique Appliquée (1999)
- Volume: 47, Issue: 4, page 33-46
- ISSN: 0035-175X
Access Full Article
topHow to cite
topFerré, L., and Yao, A. F.. "Un critère de choix de la dimension dans la méthode SIR II." Revue de Statistique Appliquée 47.4 (1999): 33-46. <http://eudml.org/doc/106468>.
@article{Ferré1999,
author = {Ferré, L., Yao, A. F.},
journal = {Revue de Statistique Appliquée},
language = {fre},
number = {4},
pages = {33-46},
publisher = {Société française de statistique},
title = {Un critère de choix de la dimension dans la méthode SIR II},
url = {http://eudml.org/doc/106468},
volume = {47},
year = {1999},
}
TY - JOUR
AU - Ferré, L.
AU - Yao, A. F.
TI - Un critère de choix de la dimension dans la méthode SIR II
JO - Revue de Statistique Appliquée
PY - 1999
PB - Société française de statistique
VL - 47
IS - 4
SP - 33
EP - 46
LA - fre
UR - http://eudml.org/doc/106468
ER -
References
top- [1] Brieman L. & Friedman J. (1985), « Estimating Optimal Transformations for Multiple Regression and Correlation », Journal of the American Statistical Association, 80, 580-597. Zbl0594.62044MR803258
- [2] Cook R.D. & Weisberg S. (1991), Comment on «Sliced Inverse Regression for Dimension Reduction», K.C. Li, Journal of the American Statistical Association, 86, 328-332. MR1137117
- [3] Ferré L. (1997), «Dimension Choice for Sliced Inverse Regression Based on Ranks», Student, 2, 95-108. MR1408776
- [4] Ferré L. (1998), «Determining the Dimension in Sliced Inverse Regression and Related Methods», Journal of the American Statistical Association, 93, 132-140. Zbl0908.62049MR1614604
- [5] Friedman J. & Stuetzle W. (1981), « Projection Pursuit Regression », Journal of the American Statistical Association, 76, 817- 823. MR650892
- [6] Hall P. & Li K.C. (1993), « On Almost Linearity of Low Dimensional Projection from High Dimensional Data», The Annals of Statistics, 21, 867- 889. Zbl0782.62065MR1232523
- [7] Härdle W. & Stoker T.M. (1989), «Investigating Smooth Multiple Regression by the Method of Average Derivatives », Journal of the American Statistical Association, 84, 986-995. Zbl0703.62052MR1134488
- [8] Hastie T. & Tibshirani R. (1986), «General Additive Model», Statistical Science, 1, 297-318. Zbl0645.62068MR858512
- [9] Hsing T. & Carroll R.J. (1992), «An Asymptotic Theory for Sliced Inverse Regression », The Annals of Statistics, 20, 2, 1040-1061. Zbl0821.62019MR1165605
- [10] Kötter T. (1996), «An Asymptotic Result for Sliced Inverse Regression», Computational Statistics, 11, 113- 136. Zbl0933.62031MR1394544
- [11] Li K.C. (1991), «Sliced Inverse Regression for Dimension Reduction» (with comments, Journal of the American Statistical Association, 86, 316-327. Zbl0742.62044MR1137117
- [12] Li K.C. (1992), «On Principal Hessian Directions for Data Visualisation and Dimension Reduction : another application of Stein's lemma», Journal of the American Statistical Association, 87, 1025 -1039. Zbl0765.62003MR1209564
- [13] Magnus J.R. & Neudecker H. (1987), Matrix differential calculus with applications in statistics and econometrics, J. Wiley, 1987. Zbl0651.15001MR940471
- [14] Schott J.R. (1994), «Determing the Dimentionality in Sliced Inverse Regression», Journal of the American Statistical Association,89, 141-148. Zbl0791.62069MR1266291
- [15] Zuroff D.C. (1994), «Depressive Personality Styles and Adult Attachment Style», Journal of Personality Assesment, 63, 453-472. MR1292161
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.