Copules archimédiennes et tableaux de contingence à variables qualitatives ordinales

V. Choulakian; J. de Tibeiro

Revue de Statistique Appliquée (2000)

  • Volume: 48, Issue: 4, page 83-96
  • ISSN: 0035-175X

How to cite


Choulakian, V., and de Tibeiro, J.. "Copules archimédiennes et tableaux de contingence à variables qualitatives ordinales." Revue de Statistique Appliquée 48.4 (2000): 83-96. <>.

author = {Choulakian, V., de Tibeiro, J.},
journal = {Revue de Statistique Appliquée},
language = {fre},
number = {4},
pages = {83-96},
publisher = {Société française de statistique},
title = {Copules archimédiennes et tableaux de contingence à variables qualitatives ordinales},
url = {},
volume = {48},
year = {2000},

AU - Choulakian, V.
AU - de Tibeiro, J.
TI - Copules archimédiennes et tableaux de contingence à variables qualitatives ordinales
JO - Revue de Statistique Appliquée
PY - 2000
PB - Société française de statistique
VL - 48
IS - 4
SP - 83
EP - 96
LA - fre
UR -
ER -


  1. Agresti A. (1984), Analysis of Ordinal Data, Wiley, N.Y. Zbl0647.62052MR747468
  2. Agresti A., Coull B.A. (1998), Order-restricted inference for monotone trend alternatives in contingency tables, Computational Statistics and Data Analysis, 28, 2, 139-156. Zbl1042.62553
  3. Birch M.W. (1964), A new proof of the Pearson-Fisher theorem, Annals of Mathematical Statistics, 35, 818-824. Zbl0259.62017MR169324
  4. Bishop Y.M.M., Fienberg S.E., Holland P.W. (1975), Discrete Multivariate Analysis, Theory and Practice, Cambridge, Mass, MIT Press. Zbl0332.62039MR381130
  5. Clayton D.G. (1978), A model for association in bivariate life tables and its application in epidemiological studies of familial tendency in chronic disease incidence, Biometrika, 65, 141-151. Zbl0394.92021MR501698
  6. Cook R.D., Johnson M.E. (1981), A family of distributions for modelling nonelliptically symmetric multivariate data, Journal of the Royal Statistical Society, ser. B., 43, 210-218. Zbl0471.62046MR626768
  7. Cox C. (1984), An elementary introduction to maximum likelihood estimation for multinomial models : Birch's theorem and the delta method, The American Statistician, 38, 283-287. MR770259
  8. Dale J.R. (1984), Local versus global association for bivariate ordered responses, Biometrika, 71, 507-514. MR775396
  9. Frankm. J. (1979), On the simultaneous associativity of F(x, y) and x+y-F(x, y, Aequationes Mathematicae, 19, 194-226. Zbl0444.39003MR556722
  10. Genest C. (1987), Frank's family of bivariate distributions, Biometrika, 74, 549-555. Zbl0635.62038MR909358
  11. Genest C., MacKay R.J. (1986), Copules Archimédiennes et familles de lois bidimensionnelles dont les marges sont données, The Canadian Journal of Statistics, 14, 145 -159. Zbl0605.62049MR849869
  12. Genest C., Rivest L.P. (1993), Statistical inference procedures for bivariate Archimedean copulas, Journal of the American Statistical Association, 88, 1034 -1043. Zbl0785.62032MR1242947
  13. Glass D.V., Hall J.R. (1954), Social mobility in Great Britain : A study of intergeneration changes in status, In D.V. Glass (Editor), Social Mobility in Britain, 177-217, London: Routledge and Kegan Press. 
  14. Goodman L.A. (1979), Simple models for the analysis of cross-classifications having ordered categories, Journal of the American Statistical Association, 74, 537-552. MR548257
  15. Goodman L.A. (1981), Association models and the bivariate normal for contingency tables with ordered categories, Biometrika, 68, 347- 355. Zbl0477.62038MR626393
  16. Gumbel E.J. (1960), Bivariate exponential distributions, Journal of the American Statistical Association, 55,698-707. Zbl0099.14501MR116403
  17. Jefferson T.R., May J.H., Ravi N. (1989), An entropy approach to the scaling of ordinal categorical data, Pyschometrika, 54, 2, 203- 215. 
  18. Hougaard P. (1986), A class of multivariate failure time distribution, Biometrika, 73,671-678, (Correction, 75,395). Zbl0613.62121MR897858
  19. Hutchinson T.P. (1979), Four applications of a bivariate Pareto distribution, Biometrical Journal, 21, 553-563. Zbl0421.62014
  20. Hutchinson T.P., Lai C.D. (1990), Continuous Bivariate Distributions, Emphasising Applications, Rumsby Scientific Publishing: Australia. Zbl1170.62330MR1070715
  21. Lapp K., Molenberghs G., Lesaffre E. (1998), Models for the association between ordinal variables, Computational Statistics & Data Analysis, 28, 4, 387-412. Zbl1042.62557MR1659199
  22. Lehmann E.L. (1966), Some concepts of dependence, Annals of Mathematical Statistics, 37, 1137-1153. Zbl0146.40601MR202228
  23. Nguyen T.T., Sampson A.R. (1987), Testing for positive quadrant dependence in ordinal contingency tables, Naval Research Logistics, 34, 859- 877. Zbl0648.62060MR913471
  24. Nishisato S., Arri P.S. (1975), Nonlinear programming approach to optimal scaling of partially ordered categories, Psychometrika, 40, 525- 548. Zbl0317.92033
  25. Ogborn J. (1984), Cumulative and local odds-ratio measures of uniformity of association in two-way ordered contingency tables, British Journal of Mathematical and Statistical Psychology, 37, 89-99. 
  26. Plackett R.L. (1965), A class of bivariate distributions, Journal of the American Statistical Society, 60, 516-522. MR183042
  27. Rayner J.C.W., Best D.J. (1996), Smooth extensions of Pearson's product moment correlation and Spearman's rho, Statistics & Probability Letters, 30, 171-177. Zbl0861.62043MR1417004
  28. Shriever B.F.(1986), Order Dependence, CWI-Tract 20, Centre for Mathematics and Computer Science, Amsterdam. Zbl0589.62040MR831937
  29. Srole L., Langner T.S., Michael S.T., Opler M.K., Rennie T.A.C. (1974), Mental Health in the Metropolis, The Midtown Manhattan Study, Revised edition, N.Y., McGraw-Hill. 
  30. Wahrendorf J. (1980), Inference in contingency tables with ordered categories using Plackett's coefficient of association for bivariate distributions, Biometrika, 67, 15-21. Zbl0444.62065MR570500

NotesEmbed ?


You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.


Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.