Mise en œuvre de l'algorithme EM pour l'estimation d'un modèle linéaire généralisé multinomial à effets aléatoires

Michel Goulard

Revue de Statistique Appliquée (2001)

  • Volume: 49, Issue: 4, page 29-52
  • ISSN: 0035-175X

How to cite

top

Goulard, Michel. "Mise en œuvre de l'algorithme EM pour l'estimation d'un modèle linéaire généralisé multinomial à effets aléatoires." Revue de Statistique Appliquée 49.4 (2001): 29-52. <http://eudml.org/doc/106506>.

@article{Goulard2001,
author = {Goulard, Michel},
journal = {Revue de Statistique Appliquée},
language = {fre},
number = {4},
pages = {29-52},
publisher = {Société française de statistique},
title = {Mise en œuvre de l'algorithme EM pour l'estimation d'un modèle linéaire généralisé multinomial à effets aléatoires},
url = {http://eudml.org/doc/106506},
volume = {49},
year = {2001},
}

TY - JOUR
AU - Goulard, Michel
TI - Mise en œuvre de l'algorithme EM pour l'estimation d'un modèle linéaire généralisé multinomial à effets aléatoires
JO - Revue de Statistique Appliquée
PY - 2001
PB - Société française de statistique
VL - 49
IS - 4
SP - 29
EP - 52
LA - fre
UR - http://eudml.org/doc/106506
ER -

References

top
  1. Agostini D., (1995) La floraison du kiwi (Actinidia deliciosaa cv. Hayward) : analyse de la variabilité et simulation par un modèle stochastique. Thèse de doctorat, Université de Lyon I. 
  2. Booth J.G., & Hobert J.P., (1999) Maximizing generalized linear mixed model likelihood with an automated Monte Carlo algorithm. J. Roy. Statist. Soc. Ser.B, 61, 1, 265-285. Zbl0917.62058
  3. Doucet A., (1998) On sequential simulation-based methods for Bayesian filtering. Technical report CUED/F-INFENG/TR.310. 
  4. Fahrmeir L. & Tutz G., (1994) Multivariate statistical modelling based on generalized linear models. Springer-Verlag, New York, 425p. Zbl0809.62064MR1284203
  5. Gammerman D., (1997) Sampling from the posterior distribution in generalized linear mixed models. Statistics and Computing, 7, 57- 68. 
  6. Geyer C.J. & Thompson E.A. (1992) Constrained Monte Carlo maximum likelihood for dependent data. J. Roy. Statist. Soc. Ser.B54, 3, 657-699. MR1185217
  7. Liu J.S. & Chen R. (1995). Blind deconvolution via sequential imputations. J.A.S.A., 90, 430, 567- 576. Zbl0826.62062
  8. Liu J.S. & Chen R. (1998) Sequential Monte Carlo methods for dynamic systems. J.A.S.A., 93, 443, 1032- 1044. Zbl1064.65500MR1649198
  9. Louis T.A. (1982) Finding the observed information matrix when using the EM algorithm. J. Roy. Statist. Soc. Ser: B44, 2, 226-233. Zbl0488.62018MR676213
  10. McCulloch C.E., (1997) Maximum likelihood algorithms for generalized linear mixed models. JASA, 92, 437, 162-170. Zbl0889.62061MR1436105
  11. Quintana F.A., Liu J.S. & Del Pino G.E., (1999) Monte-Carlo EM with importance reweighting and its applications in random effects models. Computational Statistics & Data Analysis, 29, 429-444. Zbl1042.62597
  12. Robert C., (1996) Méthodes de Monte-Carlo par chaînes de Markov. Statistique mathématique et probabilité, Economica, Paris, 340 p. Zbl0917.60007MR1419096
  13. Tanner M. A, (1993) Tools for statistical inference. 3rd edition. Springer, New-York, 207 p. Zbl0846.62001MR1396311
  14. Zeger S.L. & M. Rezaul Karim, (1991) Generalized linear models with random effects; A Gibbs sampling approach. JASA, 86, 413,79-86. MR1137101

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.