Trois méthodes non paramétriques pour l'estimation de courbes de référence- application à l'analyse de propriétés biophysiques de la peau
Ali Gannoun; Stéphane Girard; Christiane Guinot; Jérôme Saracco
Revue de Statistique Appliquée (2002)
- Volume: 50, Issue: 1, page 65-89
- ISSN: 0035-175X
Access Full Article
topHow to cite
topGannoun, Ali, et al. "Trois méthodes non paramétriques pour l'estimation de courbes de référence- application à l'analyse de propriétés biophysiques de la peau." Revue de Statistique Appliquée 50.1 (2002): 65-89. <http://eudml.org/doc/106514>.
@article{Gannoun2002,
author = {Gannoun, Ali, Girard, Stéphane, Guinot, Christiane, Saracco, Jérôme},
journal = {Revue de Statistique Appliquée},
language = {fre},
number = {1},
pages = {65-89},
publisher = {Société française de statistique},
title = {Trois méthodes non paramétriques pour l'estimation de courbes de référence- application à l'analyse de propriétés biophysiques de la peau},
url = {http://eudml.org/doc/106514},
volume = {50},
year = {2002},
}
TY - JOUR
AU - Gannoun, Ali
AU - Girard, Stéphane
AU - Guinot, Christiane
AU - Saracco, Jérôme
TI - Trois méthodes non paramétriques pour l'estimation de courbes de référence- application à l'analyse de propriétés biophysiques de la peau
JO - Revue de Statistique Appliquée
PY - 2002
PB - Société française de statistique
VL - 50
IS - 1
SP - 65
EP - 89
LA - fre
UR - http://eudml.org/doc/106514
ER -
References
top- Basset, G. & Koenker, R. (1982). An empirical quantile function for linear models with iid errors. Journal of the American Statistical Association, 77, 407-415. Zbl0493.62047MR664682
- Berlinet, A., Gannoun, A. & Matzner-Løber, E. (2001). Asymptotic normality of convergent estimates of conditional quantiles. Statistics, 35, 139-169. Zbl0997.62037MR1820681
- Bhattacharya, P.K. & Gangopadhyay, A.K. (1990). Kernel and nearestneighbor estimation of a conditional quantile. The Annals of Statistics, 18, 1400-1415. Zbl0706.62040MR1062716
- Chardon, A., Cretois, I. & Hourseau, C. (1991). Skin colour typology and suntanning pathways. International Journal of Cosmetic Science, 13, 191-208.
- Chaudhuri, P. (1991). Nonparametric estimates of regression quantiles and their local bahadur representation. The Annals of Statistics, 19, 760-777. Zbl0728.62042MR1105843
- Cole, T.J. (1988). Fitting smoothed centile curves to reference data. Journal of Royal Statistical Society, Series A, 151, 385-418.
- Deheuvels, P. (1977). Estimation non paramétrique de la densité par histogramme généralisé. La Revue de Statistique Appliquée, 35, 5-42. MR501555
- Ducharme, G.R., Gannoun, A., Guertin, M.C. & Jéquier, J.C. (1995). Reference values obtained by kernel-based estimation of quantile regression. Biometrics, 51, 1105-1116. Zbl0875.62153
- Fan, J. & Gijbels, I. (1992). Variable bandwidth and local linear regression smoothers. The Annals of Statistics, 20, 2008-2036. Zbl0765.62040MR1193323
- Fan, J., Hu, T.C., & Truong, Y.K. (1994). Robust nonparametric function estimation. Scandinavian Journal of Statistics, 21, 433-446. Zbl0810.62038MR1310087
- Gannoun, A. (1990). Estimation non paramétrique de la médiane conditionnelle : médianogramme et méthode du noyau. Annales de l'I.S.U.P., XXXXV, 11-22.
- Goldstein, H. & Pan, H. (1992). Percentile smoothing using piecewise polynomials, with covariates. Biometrics, 48, 1057-1068. MR1212857
- Härdle, W. (1990). Applied nonparametric regression, Cambridge University Press, Cambridge. Zbl0875.62159MR1161622
- Healy, M.J.R., Rasbash, J., & Yang, M. (1988). Distribution-free estimation of age-related Centiles. Annals of Human Biology, 15, 17-22.
- Hendricks, W. & Koenker, R. (1992). Hierarchical spline models for conditional quantiles and the demand for electricity. Journal of the American Statistical Association, 99, 58-68.
- Horn, P.S., Pesce, A.J., & Copeland, B.E. (1998). A robust approach to reference interval estimation and evoluation. Clinical Chemistry, 44, 622-631.
- Jones, M.C. & Hall, P. (1990). Mean squared error properties of kernel estimates of regression quantiles. Statistic and Probability Letters, 10, 283-289. Zbl0716.62041MR1069903
- Koenker, R., Portnoy, S., & Ng, P. (1992). Nonparametric estimation of conditional quantile functions. L1- statistical analysis and related methods, ed Y. Dodge, Elsevier: Amsterdam, 217-229. MR1214834
- Magee, L., Burbidge, J.B., & Robb, A.L. (1991). Computing kernel-smoothed Conditional Quantiles from Many Observations. Journal of the American Statistical Association, 86, 673-677. MR1147091
- Mint El Mouvit, L. (2000). Sur l'estimateur linéaire local de la fonction de répartition conditionnelle. Thèse de doctorat, Université Montpellier 2.
- Poiraud-Casanova, S. & Thomas-Agnan, C. (1998). Quantiles conditionnels. Journal de la Société Française de Statistique, 139(4), 31-44.
- Poiraud-Casanova, S. (2000). Estimation non paramétrique des quantiles conditionnels. Thèse de doctorat, Université Toulouse1.
- Roussas, G.R. (1991). Estimation of transition distribution function and its quantiles in Markov processes : strong consistency and asymptotic normality. Nonparametric Functional Estimation and Related Topics, Kluwer Academic Publishers: Netherlands, 443-462. Zbl0735.62081MR1154345
- Royston, P. (1991). Constructing time-specific reference ranges. Statistics in Medicine, 10, 675-690.
- Royston, P. & Altman, D.G. (1992). Regression using fractional polynomials of continuous covariates : parsimonious parametric modelling (with discussion. Applied Statistics, 43, 429-467.
- Royston, P. & Wright, E.M. (1998). How to construct normal ranges for fetal variables. Utrasound Obstet Gynecol, 11, 30-38.
- Samanta, T. (1989). Non-parametric estimation of conditional quantiles. Statistic and Probability Letters, 7, 407-412. Zbl0678.62049MR1001144
- Stone, C.J. (1977). Consistent nonparametric regression (with discussion. The Annals of Statistics, 5, 595-645. Zbl0366.62051MR443204
- Stute, W. (1986). Conditional empirical processes. The Annals of Statistics, 14, 638-647. Zbl0594.62038MR840519
- Tango, T. (1998). Estimation of age-specific reference ranges via smoother AVAS. Statistics in Medicine, 17, 1231-1243.
- Wright, E.M. & Royston, P. (1997). A Comparaison of Statistical Methods for Age-Related Reference Intervals. J. R. Statist. Soc. Series A, 160, 47-69.
- Yao, Q. (1999). Conditional predictive regions for stochastic processes. Technical report, University of Kent at Canterbury, UK.
- Yu, K. (1997). Smooth regression quantile estimation. Ph.D. thesis, The open University, UK.
- Yu, K. & Jones, M.C. (1998). Local linear quantile regression. Journal of the American Statistical Association, 93, 228-237. Zbl0906.62038MR1614628
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.