Trois méthodes non paramétriques pour l'estimation de courbes de référence- application à l'analyse de propriétés biophysiques de la peau

Ali Gannoun; Stéphane Girard; Christiane Guinot; Jérôme Saracco

Revue de Statistique Appliquée (2002)

  • Volume: 50, Issue: 1, page 65-89
  • ISSN: 0035-175X

How to cite

top

Gannoun, Ali, et al. "Trois méthodes non paramétriques pour l'estimation de courbes de référence- application à l'analyse de propriétés biophysiques de la peau." Revue de Statistique Appliquée 50.1 (2002): 65-89. <http://eudml.org/doc/106514>.

@article{Gannoun2002,
author = {Gannoun, Ali, Girard, Stéphane, Guinot, Christiane, Saracco, Jérôme},
journal = {Revue de Statistique Appliquée},
language = {fre},
number = {1},
pages = {65-89},
publisher = {Société française de statistique},
title = {Trois méthodes non paramétriques pour l'estimation de courbes de référence- application à l'analyse de propriétés biophysiques de la peau},
url = {http://eudml.org/doc/106514},
volume = {50},
year = {2002},
}

TY - JOUR
AU - Gannoun, Ali
AU - Girard, Stéphane
AU - Guinot, Christiane
AU - Saracco, Jérôme
TI - Trois méthodes non paramétriques pour l'estimation de courbes de référence- application à l'analyse de propriétés biophysiques de la peau
JO - Revue de Statistique Appliquée
PY - 2002
PB - Société française de statistique
VL - 50
IS - 1
SP - 65
EP - 89
LA - fre
UR - http://eudml.org/doc/106514
ER -

References

top
  1. Basset, G. & Koenker, R. (1982). An empirical quantile function for linear models with iid errors. Journal of the American Statistical Association, 77, 407-415. Zbl0493.62047MR664682
  2. Berlinet, A., Gannoun, A. & Matzner-Løber, E. (2001). Asymptotic normality of convergent estimates of conditional quantiles. Statistics, 35, 139-169. Zbl0997.62037MR1820681
  3. Bhattacharya, P.K. & Gangopadhyay, A.K. (1990). Kernel and nearestneighbor estimation of a conditional quantile. The Annals of Statistics, 18, 1400-1415. Zbl0706.62040MR1062716
  4. Chardon, A., Cretois, I. & Hourseau, C. (1991). Skin colour typology and suntanning pathways. International Journal of Cosmetic Science, 13, 191-208. 
  5. Chaudhuri, P. (1991). Nonparametric estimates of regression quantiles and their local bahadur representation. The Annals of Statistics, 19, 760-777. Zbl0728.62042MR1105843
  6. Cole, T.J. (1988). Fitting smoothed centile curves to reference data. Journal of Royal Statistical Society, Series A, 151, 385-418. 
  7. Deheuvels, P. (1977). Estimation non paramétrique de la densité par histogramme généralisé. La Revue de Statistique Appliquée, 35, 5-42. MR501555
  8. Ducharme, G.R., Gannoun, A., Guertin, M.C. & Jéquier, J.C. (1995). Reference values obtained by kernel-based estimation of quantile regression. Biometrics, 51, 1105-1116. Zbl0875.62153
  9. Fan, J. & Gijbels, I. (1992). Variable bandwidth and local linear regression smoothers. The Annals of Statistics, 20, 2008-2036. Zbl0765.62040MR1193323
  10. Fan, J., Hu, T.C., & Truong, Y.K. (1994). Robust nonparametric function estimation. Scandinavian Journal of Statistics, 21, 433-446. Zbl0810.62038MR1310087
  11. Gannoun, A. (1990). Estimation non paramétrique de la médiane conditionnelle : médianogramme et méthode du noyau. Annales de l'I.S.U.P., XXXXV, 11-22. 
  12. Goldstein, H. & Pan, H. (1992). Percentile smoothing using piecewise polynomials, with covariates. Biometrics, 48, 1057-1068. MR1212857
  13. Härdle, W. (1990). Applied nonparametric regression, Cambridge University Press, Cambridge. Zbl0875.62159MR1161622
  14. Healy, M.J.R., Rasbash, J., & Yang, M. (1988). Distribution-free estimation of age-related Centiles. Annals of Human Biology, 15, 17-22. 
  15. Hendricks, W. & Koenker, R. (1992). Hierarchical spline models for conditional quantiles and the demand for electricity. Journal of the American Statistical Association, 99, 58-68. 
  16. Horn, P.S., Pesce, A.J., & Copeland, B.E. (1998). A robust approach to reference interval estimation and evoluation. Clinical Chemistry, 44, 622-631. 
  17. Jones, M.C. & Hall, P. (1990). Mean squared error properties of kernel estimates of regression quantiles. Statistic and Probability Letters, 10, 283-289. Zbl0716.62041MR1069903
  18. Koenker, R., Portnoy, S., & Ng, P. (1992). Nonparametric estimation of conditional quantile functions. L1- statistical analysis and related methods, ed Y. Dodge, Elsevier: Amsterdam, 217-229. MR1214834
  19. Magee, L., Burbidge, J.B., & Robb, A.L. (1991). Computing kernel-smoothed Conditional Quantiles from Many Observations. Journal of the American Statistical Association, 86, 673-677. MR1147091
  20. Mint El Mouvit, L. (2000). Sur l'estimateur linéaire local de la fonction de répartition conditionnelle. Thèse de doctorat, Université Montpellier 2. 
  21. Poiraud-Casanova, S. & Thomas-Agnan, C. (1998). Quantiles conditionnels. Journal de la Société Française de Statistique, 139(4), 31-44. 
  22. Poiraud-Casanova, S. (2000). Estimation non paramétrique des quantiles conditionnels. Thèse de doctorat, Université Toulouse1. 
  23. Roussas, G.R. (1991). Estimation of transition distribution function and its quantiles in Markov processes : strong consistency and asymptotic normality. Nonparametric Functional Estimation and Related Topics, Kluwer Academic Publishers: Netherlands, 443-462. Zbl0735.62081MR1154345
  24. Royston, P. (1991). Constructing time-specific reference ranges. Statistics in Medicine, 10, 675-690. 
  25. Royston, P. & Altman, D.G. (1992). Regression using fractional polynomials of continuous covariates : parsimonious parametric modelling (with discussion. Applied Statistics, 43, 429-467. 
  26. Royston, P. & Wright, E.M. (1998). How to construct normal ranges for fetal variables. Utrasound Obstet Gynecol, 11, 30-38. 
  27. Samanta, T. (1989). Non-parametric estimation of conditional quantiles. Statistic and Probability Letters, 7, 407-412. Zbl0678.62049MR1001144
  28. Stone, C.J. (1977). Consistent nonparametric regression (with discussion. The Annals of Statistics, 5, 595-645. Zbl0366.62051MR443204
  29. Stute, W. (1986). Conditional empirical processes. The Annals of Statistics, 14, 638-647. Zbl0594.62038MR840519
  30. Tango, T. (1998). Estimation of age-specific reference ranges via smoother AVAS. Statistics in Medicine, 17, 1231-1243. 
  31. Wright, E.M. & Royston, P. (1997). A Comparaison of Statistical Methods for Age-Related Reference Intervals. J. R. Statist. Soc. Series A, 160, 47-69. 
  32. Yao, Q. (1999). Conditional predictive regions for stochastic processes. Technical report, University of Kent at Canterbury, UK. 
  33. Yu, K. (1997). Smooth regression quantile estimation. Ph.D. thesis, The open University, UK. 
  34. Yu, K. & Jones, M.C. (1998). Local linear quantile regression. Journal of the American Statistical Association, 93, 228-237. Zbl0906.62038MR1614628

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.