Validation croisée pour l'estimateur lissé de la fonction de hasard : cas des données censurées

Salima Taibi-Hassani; Élie Youndjé

Revue de Statistique Appliquée (2003)

  • Volume: 51, Issue: 1, page 73-86
  • ISSN: 0035-175X

How to cite

top

Taibi-Hassani, Salima, and Youndjé, Élie. "Validation croisée pour l'estimateur lissé de la fonction de hasard : cas des données censurées." Revue de Statistique Appliquée 51.1 (2003): 73-86. <http://eudml.org/doc/106530>.

@article{Taibi2003,
author = {Taibi-Hassani, Salima, Youndjé, Élie},
journal = {Revue de Statistique Appliquée},
language = {fre},
number = {1},
pages = {73-86},
publisher = {Société française de statistique},
title = {Validation croisée pour l'estimateur lissé de la fonction de hasard : cas des données censurées},
url = {http://eudml.org/doc/106530},
volume = {51},
year = {2003},
}

TY - JOUR
AU - Taibi-Hassani, Salima
AU - Youndjé, Élie
TI - Validation croisée pour l'estimateur lissé de la fonction de hasard : cas des données censurées
JO - Revue de Statistique Appliquée
PY - 2003
PB - Société française de statistique
VL - 51
IS - 1
SP - 73
EP - 86
LA - fre
UR - http://eudml.org/doc/106530
ER -

References

top
  1. [1] Ahmad I.A. (1976), Uniform strong convergence of the generalized failure rate estimate. Bull. Math. Statist., 17, pp. 77-84. Zbl0367.62045MR440781
  2. [2] Ango-Nzé P. (1994), Critères d'ergodicité de modèles markoviens. Estimation non paramétrique sous hypothèses de dépendance. Thèse à Univ Paris IX, France. 
  3. [3] Cai Z. et Roussas G.G. (1992), Uniform strong estimation under α-mixing, with rates. Stat. and Prob. Lett., pp. 47-55. Zbl0757.62024
  4. [4] Collomb G. (1976), Estimation non paramétrique de la régression par la méthode du noyau. Thèse à Univ. P. Sabatier, Toulouse, France. 
  5. [5] Droesbeke J.J., Fichet B. et Tassi P. (1989), Analyse statistique des durées de vie. Ed. Economica. MR1030997
  6. [6] Epanechnikov V. (1969), Nonparametric estimates of a multivariate probability density. Theory Probab. Appl.14, pp. 153 -158. Zbl0175.17101
  7. [7] Fermanian J.D. (1996), Choix d'une fenêtre optimale en n1/2 pour l'estimateur non paramétrique des fonctions de hasard, XVIIème Rencontre Franco-Belge de Statisticiens, Marne-la-Vallée. 
  8. [8] Grégoire G. (1993), Least squares Cross-Validation for counting process intensities. Scan. J. of Statist., 20, pp. 343- 360. Zbl0795.62031MR1276698
  9. [9] Hassani S., Sarda P. et Vieu P. (1986), Approche non paramétrique en théorie de la fiabilité. Rev. Statist. Appl., 35, pp. 27- 41. Zbl0609.62127MR878935
  10. [10] Härdle W. et Marron J.S. (1985), Optimal bandwidth selection in nonparametric regression function. Ann. Statist., 13, pp. 1465-1481. Zbl0594.62043MR811503
  11. [11] Lejeune M. et Sarda P. (1992), Smooth estimation of distribution and density function. Comp. Statist. Data Analysis, 14, pp. 457-471. Zbl0937.62581MR1192215
  12. [12] Marron J.S. et Padgett W.J. (1987), Asymptotically optimal bandwidth selection for kernel density estimators from randomly right censored samples. Ann. Statist., 15, pp. 1520-1535. Zbl0657.62038MR913571
  13. [13] Marron J.S. et Härdle W. (1986), Random approximations of some measure of accuracy in nonparametric curve estimation. J of Multiv. Ana., 19, pp. 1-13. MR862243
  14. [14] Marron J.S. et Wand M.P. (1992), Exact mean integrated squared errors. Ann. Statist., 20, pp. 712- 736. Zbl0746.62040MR1165589
  15. [15] Murthy V.K. (1965), Estimation of jumps, reliability and hazard rate. Ann. Statist., 36, pp. 1032-1040. Zbl0134.36103MR177474
  16. [16] Patil P.N. (1993a), Bandwidth choice for nonparametric hazard rate estimation. J. Statist. Plann. Inference, 35, pp. 15- 30. Zbl0777.62042MR1220402
  17. [17] Patil P.N. (1993b), On the least squares cross-validation bandwidth in hazard rate estimation. Ann. Statist., 21, pp. 1792-1810. Zbl0795.62041MR1245769
  18. [18] Patil P.N., Wells M.T. et Marron J.S. (1994), Some heuristic of kernel based estimators of ratio functions. Nonparametric Statist., 4, pp. 203 -209. Zbl05143440MR1290930
  19. [19] Sarda P. et Vieu P. (1991), Smoothing parameter selection in hazard estimation. Stat. and Prob. Lett., pp. 429-434. Zbl0724.62043MR1114533
  20. [20] Singpurwalla N.D. et Wong M.Y. (1983), Kernels estimators of the failure rate and density estimation : an analogy. J.A.S.A vol. 78, n° 382. Zbl0523.62034MR711128
  21. [21] Tanner M.A. et Wong W.H. (1983), The estimation of the hazard function from randomly censored data by kernel method. Ann. Statist., 11, pp. 989-993. Zbl0546.62017MR707949
  22. [22] Vieu P. (1991), Quadratic errors for nonparametric estimates under dependence. J. of Multiv. Ana., vol. 39, pp. 324-347. Zbl0751.62022MR1147126
  23. [23] Watson G.S. et Leadbetter M.R. (1964a), Hazard analysis I. Biometrica, 51, pp. 175-184. Zbl0128.13503MR184335
  24. [24] Watson G.S. et Leadbetter M.R. (1964b), Hazard analysis II. Sankhya, Ser. A, 26, pp. 110 - 116. Zbl0138.13906MR184336
  25. [25] Winter B.B. (1979), Convergence rate of perturbed empirical distribution function. J. Appl. Prob., 16, pp. 163- 173. Zbl0403.60033MR520946
  26. [26] Youndjé É., Sarda P. et Vieu P. (1996), Optimal smooth hazard estimates. Test, vol 5, N.2, pp. 374-379. Zbl0882.62036MR1439728

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.