La précision des logiciels statistiques

Dominique Ladiray; Benoît Quenneville

Revue de Statistique Appliquée (2004)

  • Volume: 52, Issue: 2, page 5-25
  • ISSN: 0035-175X

How to cite

top

Ladiray, Dominique, and Quenneville, Benoît. "La précision des logiciels statistiques." Revue de Statistique Appliquée 52.2 (2004): 5-25. <http://eudml.org/doc/106548>.

@article{Ladiray2004,
author = {Ladiray, Dominique, Quenneville, Benoît},
journal = {Revue de Statistique Appliquée},
language = {fre},
number = {2},
pages = {5-25},
publisher = {Société française de statistique},
title = {La précision des logiciels statistiques},
url = {http://eudml.org/doc/106548},
volume = {52},
year = {2004},
}

TY - JOUR
AU - Ladiray, Dominique
AU - Quenneville, Benoît
TI - La précision des logiciels statistiques
JO - Revue de Statistique Appliquée
PY - 2004
PB - Société française de statistique
VL - 52
IS - 2
SP - 5
EP - 25
LA - fre
UR - http://eudml.org/doc/106548
ER -

References

top
  1. [1] Altman M. (2003), « A Review of JMP 4.03 with Special Attention to its Numerical Accuracy », American Statistician, vol. 56, pp. 72-75. MR1939397
  2. [2] Brown B.W. (1998), « DCDFLIB v1.1 » (Double precision Cumulative Distribution Function LIBrary), disponible sur ftp://odin.mdacc.tmc.edu/pub/source. 
  3. [3] Creighton L., Ding J., « Assessing the Numerical Accuracy of JMP », disponible sur http://www.jmp.com/product/NIST.pdf 
  4. [4] Creighton L., « Assessing Random Numbers in JMP », disponible sur http://www.jmp.com/product/RNG.pdf 
  5. [5] Fishman G.S., Moore L.R. (1982), « A Statistical Evaluation of Multiplicative Congruential Generators with Modulus (2 31 - 1 », Journal of the American Statistical Association, 77, 129- 136. Zbl0477.65004
  6. [6] Knüsel L. (1998), « On the accuracy of statistical distributions in Microsoft Excel 97 », Computational Statistics and Data Analysis, 26, pp. 375-377. 
  7. [7] Knüsel L. (1995), « On the accuracy of statistical distributions in Gauss », Computational Statistics and Data Analysis, 20, pp. 699- 702. 
  8. [8] Knüsel L. (1989), « Computergestützte Berechnung Statistischer Verteilungen », Oldenburg, München- Wien. Une version anglaise du programme est disponible sur www.stat.uni-muenchen.de/∼knuesel/elv. 
  9. [9] Knuth D.E. (1997), The Art of Computer Programming, Addison-Wesley. Zbl0895.68055MR378456
  10. [10] Longley J.W. (1967), « An Appraisal of Computer Programs for the Electronic Computer from the Point of View of the User », Journal of the American Statistical Association, 62, pp. 819- 841. MR215440
  11. [11] MABALLÉE Colette et Berthe (1925), « Algorithms and Best Linear Unbiased EstimatorS », Journal of the Statistical Society of Dublin, vol. 49, pp. 469- 475. 
  12. [12] Marsaglia G. (1996), « DIEHARD : A Battery of Tests of Randomness », http://stat.fsu.edu/pub/∼diehard. 
  13. [13] Marsaglia G. (1968), « Random Numbers Fall Mainly in the Planes », in Proceedings of the National Academy of Sciences of the USA, 60, pp. 25-28. Zbl0172.21002MR235695
  14. [14] McCullough B.D. (November 1998), « Assessing the reliability of statistical software : Part I », The American Statistician, vol. 52, n° 4, pp. 358-366. 
  15. [15] McCullough B.D. (May 1999), « Assessing the reliability of statistical software : Part II », The American Statistician, vol. 53, n° 2, pp. 149-159. 
  16. [16] McCullough B.D. (2000), « The Accuracy of Mathematica 4 as a statistical package », Computational Statistics, vol. 15.0, pp. 279-299. Zbl0976.62001
  17. [17] McCullough B. D., Vinod H.D. (1999), « The Numerical Reliability of Econometric Software », Journal of Economic Literature, vol. XXXVII, pp. 633-665. 
  18. [18] McCullough B.D., Wilson B. (2002), « On the accuracy of statistical procedures in Microsoft Excel 2000 and XP », Computational Statistics & Data Analysis, vol. 40, 3, pp. 325 -332. Zbl05374215MR1933481
  19. [19] McKinnon J.G. (1996), « Numerical Distribution Functions for Unit Root and Cointegration tests », Journal of Applied Econometrics, 11, pp. 601-618. 
  20. [20] Nerlove M. (2001), « On the numerical accuracy of Mathematica 4.1 for doing ordinary least squares regression », Manuscript, AREC, University of Maryland. 
  21. [21] NIST (1998), « StRD : Statistical Reference Datasets for Assessing the Numerical Accuracy of Statistical Softwares », disponible sur http://www.nist.gov/itl/div898/strd. 
  22. [22] SAS Institute, « Assessing the Numerical Accuracy of SAS Software », disponible sur http://www.sas.com/rnd/app/papers/statisticalaccuracy.pdf 
  23. [23] Simon S.D., Lesage J.P. (1989), « Assessing the Accuracy of ANOVA Calculations in Statistical Software », Computational Statistics & Data Analysis, 8, pp. 325-332. Zbl0726.62123
  24. [24] Spencer J. (1904), « On the graduation of rates of sickness and mortality », Journal of the Institute of Actuaries, vol. 38. 
  25. [25] Stata, Statistical Software, résultats des tests disponibles sur http ://www.stata.com/support/cert/ 
  26. [26] TSP International, Benchmarks, http ://www.tspintl.com/products/tsp/benchmarks/index.htm 
  27. [27] Vinod H.D. (2000), « Review of Gauss for Windows, Including its Numerical Accuracy », Journal of Applied Econometrics, vol. 15.0, pp. 211-220. 
  28. [28] Wampler R.H. (1970), « A Report on the Accuracy of Some Widely-Used Least Squares Computer Programs », Journal of the American Statistical Association, 65, pp. 549-565. Zbl0196.22405
  29. [29] Wampler R.H. (1980), « Test Procedures and Test Problems for Least Squares Algorithms », Journal of Econometrics, 12, pp. 3-22. Zbl0421.65041
  30. [30] Wilkinson L. (1985),Statistics Quiz, Evanston, IL: SYSTAT Inc., (disponible sur http ://www.tspintl.com/benchmarks) 

NotesEmbed ?

top

You must be logged in to post comments.