Application de la théorie des valeurs extrêmes en hydrologie
Revue de Statistique Appliquée (2006)
- Volume: 54, Issue: 2, page 5-31
- ISSN: 0035-175X
Access Full Article
topHow to cite
topGuillou, A., and Willems, P.. "Application de la théorie des valeurs extrêmes en hydrologie." Revue de Statistique Appliquée 54.2 (2006): 5-31. <http://eudml.org/doc/106581>.
@article{Guillou2006,
author = {Guillou, A., Willems, P.},
journal = {Revue de Statistique Appliquée},
language = {fre},
number = {2},
pages = {5-31},
publisher = {Société française de statistique},
title = {Application de la théorie des valeurs extrêmes en hydrologie},
url = {http://eudml.org/doc/106581},
volume = {54},
year = {2006},
}
TY - JOUR
AU - Guillou, A.
AU - Willems, P.
TI - Application de la théorie des valeurs extrêmes en hydrologie
JO - Revue de Statistique Appliquée
PY - 2006
PB - Société française de statistique
VL - 54
IS - 2
SP - 5
EP - 31
LA - fre
UR - http://eudml.org/doc/106581
ER -
References
top- BALKEMA A. et DE HAAN L. ( 1974), Residual life time at great age, Ann. Probab., 2, 792-804. Zbl0295.60014MR359049
- BEIRLANT J., DIERCKX G. et GUILLOU A. ( 2005), Estimation of the extreme value index and regression on generalized quantile plots, Bernoulli, 11, 6, 949-970. Zbl1123.62034MR2188836
- BEIRLANT J. et GUILLOU A. ( 2001), Pareto index estimation under moderate right censoring, Scand. Actuarial J., 2, 111-125. Zbl0979.91047MR1864448
- BEIRLANT J., GUILLOU A., DELAFOSSE E. et FILS-VILLETARD A. ( 2005), Estimation of the extreme value index and high quantiles under random censoring, soumis. Zbl1157.62027
- BEIRLANT J., VYNCKIER P. et TEUGELS J.L. ( 1996), Tail index estimation, Pareto quantile plots, and regression diagnostics, J. Amer. Statist. Assoc., 91, 1659-1667. Zbl0881.62077MR1439107
- BERNIER J. ( 1967), Sur la théorie de renouvellement et son application en hydrologie, Hyd., 67, (10), Elec. France.
- BOBÉE B. et RASMUSSEN P.F. ( 1995), Recent advances in flood frequency analysis, Reviews of Geophysics, Supplement, American Geophysical Union, 1111-1116.
- BORGMAN L.E. ( 1963), Risk criteria, J. Waterways and Harbors Division, 80, 1-35.
- BUISHAND T.A. ( 1989), Statistics of extremes in climatology, Statistica Neerlandica, 43, 1, 1-30. Zbl0668.62085
- CHAOUCHE A. et BACRO J.N. ( 2004), A statistical test procedure for the shape parameter of a generalized Pareto distribution, Comput. Statist. Data Anal., 45, 787-803. Zbl05373982MR2054886
- CLAPS P. et LAIO F. ( 2003), Can continuous streamflow data support flood frequency analysis ? An alternative to the partial duration series approach, Water Resour. Res., 39, 8, 1216, doi :10.1029/2002WR001868.
- COLES S. ( 2001), Introduction to statistical modelling of extremes values, Springer Verlag. Zbl0980.62043MR1932132
- CSÖRG? S., DEHEUVELS P. et MASON D. ( 1985), Kernel estimators of the tail index of a distribution, Ann. Statist., 13, 1050-1077. Zbl0588.62051MR803758
- DREES H. et KAUFMANN E. ( 1998), Selecting the optimal sample fraction in univariate extreme value estimation, Stock. Proc. Applications, 75, 149-172. Zbl0926.62013MR1632189
- DURRANS S.R. et TOMIC S. ( 2001), Comparison of parametric tail estimators for low-flow frequency analysis, J. American Water Resour. Assoc., 37, 5, 1203-1214.
- EMBRECHTS P., KLÜPPELBERG C. et MIKOSCH T. ( 1997), Modelling extremal events, Springer, Berlin. Zbl0873.62116MR1458613
- FERRO C.A.T. et SEGERS J. ( 2003), Inference for clusters of extreme values, J. Roy. Statist. Soc. Ser. B, 65, 545-556. Zbl1065.62091MR1983763
- GNEDENKO B.V. ( 1943), Sur la distribution limite du terme maximum d'une série aléatoire, Ann. Math., 44, 423-453. Zbl0063.01643MR8655
- HALL P. ( 1982), On some simple estimates of an exponent of regular variation, J. Roy. Statist. Soc. Ser. B, 44, 37-42. Zbl0521.62024MR655370
- HARREMOËS P. et MIKKELSEN P.S. ( 1995), Properties of extreme point rainfall I : Results from a rain gauge system in Denmark, Atmos. Res., 37, 277-286.
- HILL B.M. ( 1975), A simple general approach to inference about the tail of a distribution, Ann. Statist., 3, 1163-1174. Zbl0323.62033MR378204
- HOSKING J.R.M. et WALLIS J.R. ( 1987), Parameter and quantile estimation for the generalized Pareto distribution, Technometrics, 29, 339-349. Zbl0628.62019MR906643
- KAPLAN E.L. et MEIER P. ( 1958), Non-parametric estimation from incomplete observations, J. Amer. Statist. Assoc., 53, 457-481. Zbl0089.14801MR93867
- KLEMES V. ( 1993), Probability of extreme hydrometeorological events - a different approach, In Extreme Hydrological Events : Precipitation, Floods and Droughts, IAHS Publ., 213, 167-176.
- KRATZ M. et RESNICK S. ( 1996), The qq-estimator and heavy tails, Commun. Statist. Stochastic Models, 12, 699-724. Zbl0887.62025MR1410853
- LANG M., OUARDA T.B.M.J. et BOBÉE B. ( 1999), Towards operational guidelines for over-threshold modeling, J. Hydrol., 225, 103-117.
- NAVRATIL O., ALBERT M.B. et BREIL P. ( 2002), Water level time-series analysis for bank-full flow studies in rivers, in River Flow 2002 (Eds. Bousmar & Zech), Swets & Zeitlinger, Lisse, 1167-1175.
- PICKANDS III P. ( 1975), Statistical inference using extreme order statistics, Ann. Statist., 3, 119-131. Zbl0312.62038MR423667
- RASMUSSEN P.F. ( 2001), Generalized probability weighted moments : application to the generalized Pareto distribution, Water Resour. Res., 37, 1745-1751.
- RASMUSSEN P.F., ASHKAR F., ROSBJERG D. et BOBÉE B. ( 1994), The POT method for flood estimation : a review, Stochastic and Statistical Methods in Hydrology and Environmental Engineering, K.W. Hipel (Ed.), Kluwer Academic Publishers, the Netherlands. Vol. 1 - Extreme values : floods and droughts : 15-26.
- ROMBAUTS S. et WILLEMS P. ( 2003), Statistical analysis and composite hydrographs for the river Dender Basin (in Flemish), Technical Report, 165 pages, Flemish Water Administration AWZ, Antwerp, Belgium.
- ROSBJERG D. ( 1987), On the annual maximum distribution in dependent partial duration series, Stochastic Hydrol. Hydraul., 1, 1, 3-16. Zbl0662.60119
- ROSBJERG D. et MADSEN H. ( 2004), Advanced approaches in PDS/POT modelling of extreme hydrological events, Hydrology : Science & Practice for the 21 st Century, Vol. I.
- ROSBJERG D., MADSEN H. et RASMUSSEN P.F. ( 1992), Prediction in partial duration series with generalized Pareto-distributed exceedances, Water Resour. Res., 28, 11,3001-3010.
- SCHULTZE J. et STEINEBACH J. ( 1996), On least squares estimates of an exponential tail coefficient, Statist. Decisions, 14, 353-372. Zbl0893.62023MR1437826
- SHANE R.M. et LYNN W.R. ( 1964), Mathematical model for flood risk evaluation, J. Hydraulics Division, 90, 1-20.
- SMITH R.L. ( 1987), Estimating tails of probability distributions, Ann. Statist., 15, 1174-1207. Zbl0642.62022MR902252
- TODOROVIC P. ( 1970), On some problems involving random number of random variables, Ann. Math. Statist., 41, 1059-1063. Zbl0198.51602MR261680
- USWRC ( 1976), Guidelines for determining flood flow frequency, United States Water Resources Council, Bull. 17, Hydrol. Comm. Washington, DC, 73 p.
- WILLEMS P. ( 1998), Hydrological applications of extreme value analysis, In : Hydrology in a changing environment, H. Wheater and C. Kirby (ed.), John Wiley & Sons, Chichester, vol. III, 15-25.
- WILLEMS P., VAES G., POPA D., TIMBE L. et BERLAMONT J. ( 2002), Quasi 2D river flood modelling, In : River Flow 2002, D. Bousmar and Y. Zech (eds.), Swets and Zeitlinger, lisse, Vol. 2, 1253-1259.
- WILLEMS P. ( 2004), Extreme value analysis of rainfall-runoff and river discharges, under river flooding conditions, soumis.
- WILLEMS P., GUILLOU A. et BEIRLANT J. ( 2005), Bias correction to the asymptotic properties of hydrological GPD based extreme value distributions, by means of a slowly varying function, en révision à Water Resour. Res.
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.