Application de la théorie des valeurs extrêmes en hydrologie

A. Guillou; P. Willems

Revue de Statistique Appliquée (2006)

  • Volume: 54, Issue: 2, page 5-31
  • ISSN: 0035-175X

How to cite

top

Guillou, A., and Willems, P.. "Application de la théorie des valeurs extrêmes en hydrologie." Revue de Statistique Appliquée 54.2 (2006): 5-31. <http://eudml.org/doc/106581>.

@article{Guillou2006,
author = {Guillou, A., Willems, P.},
journal = {Revue de Statistique Appliquée},
language = {fre},
number = {2},
pages = {5-31},
publisher = {Société française de statistique},
title = {Application de la théorie des valeurs extrêmes en hydrologie},
url = {http://eudml.org/doc/106581},
volume = {54},
year = {2006},
}

TY - JOUR
AU - Guillou, A.
AU - Willems, P.
TI - Application de la théorie des valeurs extrêmes en hydrologie
JO - Revue de Statistique Appliquée
PY - 2006
PB - Société française de statistique
VL - 54
IS - 2
SP - 5
EP - 31
LA - fre
UR - http://eudml.org/doc/106581
ER -

References

top
  1. BALKEMA A. et DE HAAN L. ( 1974), Residual life time at great age, Ann. Probab., 2, 792-804. Zbl0295.60014MR359049
  2. BEIRLANT J., DIERCKX G. et GUILLOU A. ( 2005), Estimation of the extreme value index and regression on generalized quantile plots, Bernoulli, 11, 6, 949-970. Zbl1123.62034MR2188836
  3. BEIRLANT J. et GUILLOU A. ( 2001), Pareto index estimation under moderate right censoring, Scand. Actuarial J., 2, 111-125. Zbl0979.91047MR1864448
  4. BEIRLANT J., GUILLOU A., DELAFOSSE E. et FILS-VILLETARD A. ( 2005), Estimation of the extreme value index and high quantiles under random censoring, soumis. Zbl1157.62027
  5. BEIRLANT J., VYNCKIER P. et TEUGELS J.L. ( 1996), Tail index estimation, Pareto quantile plots, and regression diagnostics, J. Amer. Statist. Assoc., 91, 1659-1667. Zbl0881.62077MR1439107
  6. BERNIER J. ( 1967), Sur la théorie de renouvellement et son application en hydrologie, Hyd., 67, (10), Elec. France. 
  7. BOBÉE B. et RASMUSSEN P.F. ( 1995), Recent advances in flood frequency analysis, Reviews of Geophysics, Supplement, American Geophysical Union, 1111-1116. 
  8. BORGMAN L.E. ( 1963), Risk criteria, J. Waterways and Harbors Division, 80, 1-35. 
  9. BUISHAND T.A. ( 1989), Statistics of extremes in climatology, Statistica Neerlandica, 43, 1, 1-30. Zbl0668.62085
  10. CHAOUCHE A. et BACRO J.N. ( 2004), A statistical test procedure for the shape parameter of a generalized Pareto distribution, Comput. Statist. Data Anal., 45, 787-803. Zbl05373982MR2054886
  11. CLAPS P. et LAIO F. ( 2003), Can continuous streamflow data support flood frequency analysis ? An alternative to the partial duration series approach, Water Resour. Res., 39, 8, 1216, doi :10.1029/2002WR001868. 
  12. COLES S. ( 2001), Introduction to statistical modelling of extremes values, Springer Verlag. Zbl0980.62043MR1932132
  13. CSÖRG? S., DEHEUVELS P. et MASON D. ( 1985), Kernel estimators of the tail index of a distribution, Ann. Statist., 13, 1050-1077. Zbl0588.62051MR803758
  14. DREES H. et KAUFMANN E. ( 1998), Selecting the optimal sample fraction in univariate extreme value estimation, Stock. Proc. Applications, 75, 149-172. Zbl0926.62013MR1632189
  15. DURRANS S.R. et TOMIC S. ( 2001), Comparison of parametric tail estimators for low-flow frequency analysis, J. American Water Resour. Assoc., 37, 5, 1203-1214. 
  16. EMBRECHTS P., KLÜPPELBERG C. et MIKOSCH T. ( 1997), Modelling extremal events, Springer, Berlin. Zbl0873.62116MR1458613
  17. FERRO C.A.T. et SEGERS J. ( 2003), Inference for clusters of extreme values, J. Roy. Statist. Soc. Ser. B, 65, 545-556. Zbl1065.62091MR1983763
  18. GNEDENKO B.V. ( 1943), Sur la distribution limite du terme maximum d'une série aléatoire, Ann. Math., 44, 423-453. Zbl0063.01643MR8655
  19. HALL P. ( 1982), On some simple estimates of an exponent of regular variation, J. Roy. Statist. Soc. Ser. B, 44, 37-42. Zbl0521.62024MR655370
  20. HARREMOËS P. et MIKKELSEN P.S. ( 1995), Properties of extreme point rainfall I : Results from a rain gauge system in Denmark, Atmos. Res., 37, 277-286. 
  21. HILL B.M. ( 1975), A simple general approach to inference about the tail of a distribution, Ann. Statist., 3, 1163-1174. Zbl0323.62033MR378204
  22. HOSKING J.R.M. et WALLIS J.R. ( 1987), Parameter and quantile estimation for the generalized Pareto distribution, Technometrics, 29, 339-349. Zbl0628.62019MR906643
  23. KAPLAN E.L. et MEIER P. ( 1958), Non-parametric estimation from incomplete observations, J. Amer. Statist. Assoc., 53, 457-481. Zbl0089.14801MR93867
  24. KLEMES V. ( 1993), Probability of extreme hydrometeorological events - a different approach, In Extreme Hydrological Events : Precipitation, Floods and Droughts, IAHS Publ., 213, 167-176. 
  25. KRATZ M. et RESNICK S. ( 1996), The qq-estimator and heavy tails, Commun. Statist. Stochastic Models, 12, 699-724. Zbl0887.62025MR1410853
  26. LANG M., OUARDA T.B.M.J. et BOBÉE B. ( 1999), Towards operational guidelines for over-threshold modeling, J. Hydrol., 225, 103-117. 
  27. NAVRATIL O., ALBERT M.B. et BREIL P. ( 2002), Water level time-series analysis for bank-full flow studies in rivers, in River Flow 2002 (Eds. Bousmar & Zech), Swets & Zeitlinger, Lisse, 1167-1175. 
  28. PICKANDS III P. ( 1975), Statistical inference using extreme order statistics, Ann. Statist., 3, 119-131. Zbl0312.62038MR423667
  29. RASMUSSEN P.F. ( 2001), Generalized probability weighted moments : application to the generalized Pareto distribution, Water Resour. Res., 37, 1745-1751. 
  30. RASMUSSEN P.F., ASHKAR F., ROSBJERG D. et BOBÉE B. ( 1994), The POT method for flood estimation : a review, Stochastic and Statistical Methods in Hydrology and Environmental Engineering, K.W. Hipel (Ed.), Kluwer Academic Publishers, the Netherlands. Vol. 1 - Extreme values : floods and droughts : 15-26. 
  31. ROMBAUTS S. et WILLEMS P. ( 2003), Statistical analysis and composite hydrographs for the river Dender Basin (in Flemish), Technical Report, 165 pages, Flemish Water Administration AWZ, Antwerp, Belgium. 
  32. ROSBJERG D. ( 1987), On the annual maximum distribution in dependent partial duration series, Stochastic Hydrol. Hydraul., 1, 1, 3-16. Zbl0662.60119
  33. ROSBJERG D. et MADSEN H. ( 2004), Advanced approaches in PDS/POT modelling of extreme hydrological events, Hydrology : Science & Practice for the 21 st Century, Vol. I. 
  34. ROSBJERG D., MADSEN H. et RASMUSSEN P.F. ( 1992), Prediction in partial duration series with generalized Pareto-distributed exceedances, Water Resour. Res., 28, 11,3001-3010. 
  35. SCHULTZE J. et STEINEBACH J. ( 1996), On least squares estimates of an exponential tail coefficient, Statist. Decisions, 14, 353-372. Zbl0893.62023MR1437826
  36. SHANE R.M. et LYNN W.R. ( 1964), Mathematical model for flood risk evaluation, J. Hydraulics Division, 90, 1-20. 
  37. SMITH R.L. ( 1987), Estimating tails of probability distributions, Ann. Statist., 15, 1174-1207. Zbl0642.62022MR902252
  38. TODOROVIC P. ( 1970), On some problems involving random number of random variables, Ann. Math. Statist., 41, 1059-1063. Zbl0198.51602MR261680
  39. USWRC ( 1976), Guidelines for determining flood flow frequency, United States Water Resources Council, Bull. 17, Hydrol. Comm. Washington, DC, 73 p. 
  40. WILLEMS P. ( 1998), Hydrological applications of extreme value analysis, In : Hydrology in a changing environment, H. Wheater and C. Kirby (ed.), John Wiley & Sons, Chichester, vol. III, 15-25. 
  41. WILLEMS P., VAES G., POPA D., TIMBE L. et BERLAMONT J. ( 2002), Quasi 2D river flood modelling, In : River Flow 2002, D. Bousmar and Y. Zech (eds.), Swets and Zeitlinger, lisse, Vol. 2, 1253-1259. 
  42. WILLEMS P. ( 2004), Extreme value analysis of rainfall-runoff and river discharges, under river flooding conditions, soumis. 
  43. WILLEMS P., GUILLOU A. et BEIRLANT J. ( 2005), Bias correction to the asymptotic properties of hydrological GPD based extreme value distributions, by means of a slowly varying function, en révision à Water Resour. Res. 

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.