Aspects méthodologiques du modèle INDSCAL
Revue de Statistique Appliquée (2006)
- Volume: 54, Issue: 2, page 83-100
- ISSN: 0035-175X
Access Full Article
topHow to cite
topReferences
top- BORG I., & GROENEN P. ( 1997), Modem Multidimensional Scaling : theory and applications, Berlin : Springer-Verlag. Zbl0862.62052MR1424243
- CARROLL J.D. & CHANG J.J. ( 1970), Analysis of individual differences in multidimensional scaling via an N-way generalization of «Eckart-Young» decomposition, Psychometrika, 35 : 283-319. Zbl0202.19101
- D'AUBIGNY G. ( 1998), Vers un renouveau des méthodes de positionnement multi-dimensionnel, 4e journées MODULAD organisées par le CISIA.
- GOWER J.C. ( 1966), Some distance properties of latent root and vector methods in multivariate analysis, Biometrika, 53, 325-338. Zbl0192.26003MR214224
- HUSSON F. & PAGÈS J. ( 2005, SOUS PRESSE), Indscal Model : geometrical interpretation and methodology, Computational Statistics and Data Analysis. Zbl05381576
- KIERS H.A.L. ( 1989), A Computational Short-Cut for INDSCAL with Orthonormality Constraints on Positive Semi-Definite Matrices of Low Rank, Computational Statistics Quartely, 5, 119-135. Zbl0715.65120
- KIERS H.A.L. ( 1997), A modification of the SINDCLUS algorithm for fitting the ADCLUS and INDCLUS models, Journal of classification, 14, 297-310. Zbl0900.92187
- KROONENBERG P.M. ( 1983), Three mode principal component analysis : Theory and applications, Leiden : DSWO press.
- ROBERT P. et ESCOUFIER Y. ( 1976), A Unifying Tool for Linear Multivariate Statistical Methods : the RV-Coefficient, Applied Statistics, 29 (3), 257-265. MR440801
- SCHIFFMAN S.S., REYNOLDS M.L. & YOUNG F.W. ( 1981), Introduction to Multidimensional Scaling, Academic Press. Zbl0539.65027
- TAKANE Y., YOUNG F.W. & DE LEEUW J. ( 1977), Nonmetric individual differences multidimensional scaling : an alternating least square method with optimal scaling features, Psychometrika, 42, 7-67. Zbl0354.92048
- TEN BERGE J.M.F. & KIERS H.A.L. ( 1991), Some clarification of the CANDE-COMP algorithm applied to INDSCAL, Psychometrika, 56 : 317-326. Zbl0850.62463MR1131047
- TEN BERGE J.M.F., KIERS H.A.L. & KRIJNEN W.P. ( 1993), Computational Solutions for the problem of Negative Saliences and Nonsymmetry in INDSCAL, Journal of classification, 10 : 115-124. Zbl0775.62148
- TORGERSON W. S. ( 1958), Theory and Methods of Scaling, Wiley, New York.
- TRENDAFILOV N. ( 2004), Orthonormality-constrained INDSCAL with Nonnegative Saliences. Full and Off-diagonal Fitting, Computational Science and Its Applications, 3044 / 2004 pp 952-960, Springer-Verlag Heidelberg. Zbl1127.91377MR2189665