Aspects méthodologiques du modèle INDSCAL

F. Husson; J. Pagès

Revue de Statistique Appliquée (2006)

  • Volume: 54, Issue: 2, page 83-100
  • ISSN: 0035-175X

How to cite

top

Husson, F., and Pagès, J.. "Aspects méthodologiques du modèle INDSCAL." Revue de Statistique Appliquée 54.2 (2006): 83-100. <http://eudml.org/doc/106583>.

@article{Husson2006,
author = {Husson, F., Pagès, J.},
journal = {Revue de Statistique Appliquée},
language = {fre},
number = {2},
pages = {83-100},
publisher = {Société française de statistique},
title = {Aspects méthodologiques du modèle INDSCAL},
url = {http://eudml.org/doc/106583},
volume = {54},
year = {2006},
}

TY - JOUR
AU - Husson, F.
AU - Pagès, J.
TI - Aspects méthodologiques du modèle INDSCAL
JO - Revue de Statistique Appliquée
PY - 2006
PB - Société française de statistique
VL - 54
IS - 2
SP - 83
EP - 100
LA - fre
UR - http://eudml.org/doc/106583
ER -

References

top
  1. BORG I., & GROENEN P. ( 1997), Modem Multidimensional Scaling : theory and applications, Berlin : Springer-Verlag. Zbl0862.62052MR1424243
  2. CARROLL J.D. & CHANG J.J. ( 1970), Analysis of individual differences in multidimensional scaling via an N-way generalization of «Eckart-Young» decomposition, Psychometrika, 35 : 283-319. Zbl0202.19101
  3. D'AUBIGNY G. ( 1998), Vers un renouveau des méthodes de positionnement multi-dimensionnel, 4e journées MODULAD organisées par le CISIA. 
  4. GOWER J.C. ( 1966), Some distance properties of latent root and vector methods in multivariate analysis, Biometrika, 53, 325-338. Zbl0192.26003MR214224
  5. HUSSON F. & PAGÈS J. ( 2005, SOUS PRESSE), Indscal Model : geometrical interpretation and methodology, Computational Statistics and Data Analysis. Zbl05381576
  6. KIERS H.A.L. ( 1989), A Computational Short-Cut for INDSCAL with Orthonormality Constraints on Positive Semi-Definite Matrices of Low Rank, Computational Statistics Quartely, 5, 119-135. Zbl0715.65120
  7. KIERS H.A.L. ( 1997), A modification of the SINDCLUS algorithm for fitting the ADCLUS and INDCLUS models, Journal of classification, 14, 297-310. Zbl0900.92187
  8. KROONENBERG P.M. ( 1983), Three mode principal component analysis : Theory and applications, Leiden : DSWO press. 
  9. ROBERT P. et ESCOUFIER Y. ( 1976), A Unifying Tool for Linear Multivariate Statistical Methods : the RV-Coefficient, Applied Statistics, 29 (3), 257-265. MR440801
  10. SCHIFFMAN S.S., REYNOLDS M.L. & YOUNG F.W. ( 1981), Introduction to Multidimensional Scaling, Academic Press. Zbl0539.65027
  11. TAKANE Y., YOUNG F.W. & DE LEEUW J. ( 1977), Nonmetric individual differences multidimensional scaling : an alternating least square method with optimal scaling features, Psychometrika, 42, 7-67. Zbl0354.92048
  12. TEN BERGE J.M.F. & KIERS H.A.L. ( 1991), Some clarification of the CANDE-COMP algorithm applied to INDSCAL, Psychometrika, 56 : 317-326. Zbl0850.62463MR1131047
  13. TEN BERGE J.M.F., KIERS H.A.L. & KRIJNEN W.P. ( 1993), Computational Solutions for the problem of Negative Saliences and Nonsymmetry in INDSCAL, Journal of classification, 10 : 115-124. Zbl0775.62148
  14. TORGERSON W. S. ( 1958), Theory and Methods of Scaling, Wiley, New York. 
  15. TRENDAFILOV N. ( 2004), Orthonormality-constrained INDSCAL with Nonnegative Saliences. Full and Off-diagonal Fitting, Computational Science and Its Applications, 3044 / 2004 pp 952-960, Springer-Verlag Heidelberg. Zbl1127.91377MR2189665

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.