Une adaptation des cartes auto-organisatrices pour des données décrites par un tableau de dissimilarités

Aïcha El Golli; Fabrice Rossi; Brieuc Conan-Guez; Yves Lechevallier

Revue de Statistique Appliquée (2006)

  • Volume: 54, Issue: 3, page 33-64
  • ISSN: 0035-175X

How to cite

top

El Golli, Aïcha, et al. "Une adaptation des cartes auto-organisatrices pour des données décrites par un tableau de dissimilarités." Revue de Statistique Appliquée 54.3 (2006): 33-64. <http://eudml.org/doc/106584>.

@article{ElGolli2006,
author = {El Golli, Aïcha, Rossi, Fabrice, Conan-Guez, Brieuc, Lechevallier, Yves},
journal = {Revue de Statistique Appliquée},
language = {fre},
number = {3},
pages = {33-64},
publisher = {Société française de statistique},
title = {Une adaptation des cartes auto-organisatrices pour des données décrites par un tableau de dissimilarités},
url = {http://eudml.org/doc/106584},
volume = {54},
year = {2006},
}

TY - JOUR
AU - El Golli, Aïcha
AU - Rossi, Fabrice
AU - Conan-Guez, Brieuc
AU - Lechevallier, Yves
TI - Une adaptation des cartes auto-organisatrices pour des données décrites par un tableau de dissimilarités
JO - Revue de Statistique Appliquée
PY - 2006
PB - Société française de statistique
VL - 54
IS - 3
SP - 33
EP - 64
LA - fre
UR - http://eudml.org/doc/106584
ER -

References

top
  1. BACELAR-NICOLAU H. ( 1985), The affinity coefficient in cluster analysis. Methods of operations research, 53, 507-512. Zbl0594.62071
  2. BACELAR-NICOLAU H. ( 2000), Analysis of symbolic data : exploratory methods for extracting statistical information from complex data, H. H. Bock and E. Diday, Ch. Similarity and Dissimilarity, pp. 160-165. Zbl0977.62066MR1792132
  3. BERNERS-LEE T., FIELDING R., MASINTER L. (August 1998), Uniform Resource Identifiers (URI) : Generic Syntax. RFC 2396, The Internet Society, http://www.ietf.org/rfc/rfc2396.txt. 
  4. BOCK H. H. ( 2001), Clustering algorithms and kohonen maps for symbolic data, in : Proc. of The International Conference on New Trends in Computational Statistics with Biomedical Applications (ICNCB). Zbl1330.62243
  5. BOCK H. H., DIDAY E. ( 1999), Analysis of symbolic Data, Exploratory methods for extracting statistical information from complex data, Springer. Zbl1039.62501MR1792132
  6. CELEUX G., DIDAY E., GOVAERT G., LECHEVALLIER Y., RALAMBONDRAINY H. ( 1989), Classification automatique des données, Dunod informatique. Zbl0729.62574
  7. CHAVENT M., DE CARVALHO F.A.T., LECHEVALLIER Y., VERDE R. ( 2003), Trois nouvelles méthodes de classification automatique de données symboliques de type intervalle, Revue de Statistique Appliquées, 4, 5-29. 
  8. CHAVENT M., LECHEVALLIER Y. ( 2002), Dynamical clustering of interval data. Optimization of an adequacy criterion based on Hausdorff distance, in Jajuga K., Sokolowski A. et Bock H.H. (Eds.) : Classification, Clustering and Data Analysis, Springer, pp. 53-60. Zbl1032.62058MR2010438
  9. CHENG Y. (November 1997), Convergence and ordering of Kohonen's batch map, Neural Computation, 9 (8), 1667-1676. 
  10. CONAN-GUEZ B., ROSSI F., EL GOLLI A. ( 2006), Fast algorithm and implementation of dissimilarity self-organizing maps, Neural Networks, 19 (6-7), 855-863. Zbl1102.68540
  11. COTTRELL M., FORT J.-C., PAGÈS G. (November 1998), Theoretical aspects of the SOM algorithm, Neurocomputing, 21 (1-3), 119-138. Zbl0917.68082
  12. COTTRELL M., IBBOU S., LETRÉMY P. (October-November 2004), SOM-based algorithms for qualitative variables, Neural Networks, 17 (8-9), 1149-1167. Zbl1078.68118
  13. COTTRELL M., LETRÉMY P. (January 2005), How to use the Kohonen algorithm to simultaneously analyze individuals and modalities in a survey, Neurocomputing, 63, 193-207. 
  14. DE REYNIÈS A. (Septembre 2002), Classification de données symboliques : une extension de la méthode des nuées dynamiques, in : Actes du IXème congrès de la société Francophone de Classification, pp. 177-180. 
  15. DE REYNIÈS A. ( 2003), Classification et discrimination en analyse de données symboliques. Thèse de doctorat, Université Paris Dauphine, Paris, France. 
  16. DIDAY E. ( 1971), La méthode des nuées dynamiques, Revue statistique appliquée, XIX (2), 19-34. 
  17. DIDAY E., GOVAERT G. ( 1977), Classification automatique avec distances adaptatives, R.A.I.R.O. Informatique Computer Science, 11 (4), 329-349. Zbl0375.62061MR495278
  18. DIDAY E., SIMON J. J. ( 1976), Clustering analysis, Fu, K. S. (Eds.), Digital Pattern Recognition. Springer, Heidelberg, 47-94. Zbl0331.62043
  19. DREYFUS G., MARTINEZ J.-M., SAMUELIDES M., GORDON M. B., BADRAN F., THIRIA S., HÉRAULT L. ( 2002) Réseaux de neurones - méthodologie et applications; Eyrolles, Paris. 
  20. EL GOLLI A. ( 2004), Extraction de données symboliques et cartes topologiques : Application aux données ayant une structure complexe. Thèse de doctorat, Université Paris-IX Dauphine, Paris, France. 
  21. EL GOLLI A., CONAN-GUEZ B., ROSSI F. (November 2004), Self organizing map and symbolic data. Journal of Symbolic Data Analysis, 2(1). Zbl1102.68540
  22. FORT J.-C., COTTRELL M., LETRÉMY P. ( 2001), Stochastic on-line algorithm versus batch algorithmfor quantization and self-organizing maps, in : Proceedings of Neural Networks for Signal Processing 2001, Falmouth, USA. 
  23. FOSS A., WANG W., ZAÏANE O. R. (April 2001), A non-parametric approach to web log analysis, in : Proc. of Workshop on Web Mining in First International SIAM Conference on Data Mining (SDM2001), Chicago, IL, pp. 41-50. 
  24. FU Y., SANDHU K., SHIH M.-Y. ( 2000), A generalization-based approach to clustering of web usage sessions, in : Masand, Spiliopoulou (Eds.), Web Usage Analysis and User Profiling, Vol. 1836 of Lecture Notes in Artificial Intelligence, Springer, pp. 21-38. 
  25. GAUL W., SCHMIDT-THIEME L. ( 2000), Frequent generalized subsequences - a problem from web mining, in : Gaul, W., Opitz, O., Schader, M. (Eds.), Data Analysis, Scientific Modelling and Practical Application, Springer, Heidelberg, pp. 429-445. 
  26. GRAEPEL T., BURGER M., OBERMAYER K. (November 1998), Self-organizing maps : Generalizations and new optimization techniques, eurocomputing, 21, 173-190. Zbl0917.68182
  27. GRAEPEL T., OBERMAYER K. ( 1999), A stochastic self-organizing map for proximity data, Neural Computation, 11 (1), 139-155. 
  28. HAMMER B., MICHELI A., SPERDUTI A., STRICKERT M. (March 2004), A general framework for unsupervised processing of structured data, Neurocomputing, 57, 3-35. 
  29. HESKES T., KAPPEN B. ( 1993), Error potentials for self-organization, in : Proceedings of 1993 IEEE International Conference on Neural Networks (Joint FUZZ-IEEE'93 and ICNN'93 [IJCNN93]). Vol. III. IEEE/INNS, San Francisco, California, pp. 1219-1223. 
  30. HOTELLING H. ( 1933), Analysis of a complex of statistical variables into principal components, Journal of Educational Psychology, 24, 417-441, 498-520. Zbl59.1182.04JFM59.1182.04
  31. KOHONEN T. ( 1995, 1997 & 2001), Self-Organizing Maps, 3rd Edition, Vol. 30 of Springer Series in Information Sciences, Springer. Zbl0866.68085
  32. KOHONEN T. ( 1996), Self-organizing maps of symbol strings. Technical report a42, Laboratory of computer and information science, Helsinki University of technology, Finland. Zbl0917.68177MR1324107
  33. KOHONEN T., SOMERVUO P. J. ( 1998), Self-organizing maps of symbol strings, Neurocomputing, 21, 19-30. Zbl0917.68177MR1450869
  34. KOHONEN T., SOMERVUO P. J. ( 2002), How to make large self-organizing maps for nonvectorial data, Neural Networks, 15 (8), 945-952. 
  35. LEVENSHTEIN V.I. ( 1966), Binary codes capable of correcting deletions, insertions and reversais, Sov. Phys. Dokl, 6, 707-710. Zbl0149.15905MR189928
  36. LUOTONEN A. ( 1995), The common logfile format, http://www.w3.org/pub/WWW/Daemon/User/Config/Logging.html. 
  37. MACQUEEN J. ( 1965), Some methods for classification and analysis of multivariate observations, in : Proc. of the Fifth Berkeley Symposium on Math., Stat. and Prob.Vol. 1. pp. 281-297. Zbl0214.46201MR214227
  38. MATUSITA K. ( 1951), Decision rules based on distance for problems of fit, two samples and estimation, Ann. Math. Stat., 3, 1-30. Zbl0065.12101MR73899
  39. MATUSITA K. ( 1955), On the theory of statistical decision functions, Ann. Math. Stat., 26, 631-640. Zbl0065.12101MR73899
  40. MOBASHER B., DAI H., LUO T., NAKAGAWA M. (January 2002), Discovery and evaluation of aggregate usage profiles for web personalization, Data Mining and Knowledge Discovery, 6 (1), 61-82. MR1917931
  41. RAGGETT D., LE HORS A., JACOBS I. (December 1999), HTML 4.01 specification, W3C recommendation, W3C, http://www.w3.org/TR/html4/. 
  42. RAMSAY J., SILVERMAN B. (June 1997, Functional Data Analysis, Springer Series in Statistics. Springer Verlag. Zbl0882.62002MR2168993
  43. ROSSI F., CONAN-GUEZ B., EL GOLLI A. (April 2004), Clustering functional data with the som algorithm, in : Proceedings of ESANN 2004. Bruges, Belgium, pp. 305-312. 
  44. SOMERVUO P. J. ( 2004), Online algorithm for the self-organizing map of symbol strings, Neural Networks, 17 (1231-1239). 
  45. SRIVASTAVA J., COOLEY R., DESHPANDE M., TAN P.-N. ( 2000), Web usage mining : Discovery and applications of usage patterns from web data, SIGKDD Explorations, 1 (2), 12-23. 
  46. TANASA D., TROUSSE B. ( 2003), Le prétraitement des fichiers log web dans le web usage mining multi-sites, in : Journées Francophones de la toile. 
  47. TANASA D., TROUSSE B. ( 2004a), Advanced data preprocessing for intersites web usage mining, IEEE Intelligent Systems, 19 (2), 59-65. 
  48. TANASA D., TROUSSE B. ( 2004b), Data preprocessing for wum, IEEE Potentials, 23 (3), 22-25. 
  49. TENENBAUM J. B., DE SILVA V., LANGFORD J. C. (December 2000), A global geometric framework for nonlinear dimensionality reduction, Science, 290 (5500), 2319-2323. 
  50. THIRIA S., LECHEVALLIER Y., GASCUEL O., CANU S. ( 1997), Statistique et méthodes neuronales, Dunod, Paris. 
  51. TORGERSON W. S. ( 1952), Multidimensional scaling : I. theory and method, Psychometrika, 17, 401-419. Zbl0049.37603MR54219
  52. VERDE R., DECARVALHO F., LECHEVALLIER Y. ( 2000), A dynamical clustering algorithm for multi-nominal data, in :H.A.L. Kiers, J.-P. Rasson, P. G., Schader, M. (Eds.), Data Analysis, Classification, and Related Method, Springer-Verlag, Heidelberg, pp. 387-394. Zbl1026.62069MR1848204
  53. W3C HTML WORKING GROUP (August 2002), XHTML 1.0 the Extensible Hyper Text Markup Language, W3C recommendation, W3C, second Edition, http://www.w3.org/TR/xhtml1/. 
  54. WANG J.-L., WANG X., LIN K.-I., SHASHA D., SHAPIRO B. A., ZHANG K. ( 1999), Evaluating a class of distance-mapping algorithms for data mining and clustering, in : Proceedings of the fifth ACM SIGKDD international conference on Knowledge discovery and data mining. pp. 307-311. 

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.