On permutation groups of prime degree p which contain (at least) two classes of conjugate subgroups of index p

Noboru Ito

Rendiconti del Seminario Matematico della Università di Padova (1967)

  • Volume: 38, page 287-292
  • ISSN: 0041-8994

How to cite

top

Ito, Noboru. "On permutation groups of prime degree $p$ which contain (at least) two classes of conjugate subgroups of index $p$." Rendiconti del Seminario Matematico della Università di Padova 38 (1967): 287-292. <http://eudml.org/doc/107222>.

@article{Ito1967,
author = {Ito, Noboru},
journal = {Rendiconti del Seminario Matematico della Università di Padova},
keywords = {group theory},
language = {eng},
pages = {287-292},
publisher = {Seminario Matematico of the University of Padua},
title = {On permutation groups of prime degree $p$ which contain (at least) two classes of conjugate subgroups of index $p$},
url = {http://eudml.org/doc/107222},
volume = {38},
year = {1967},
}

TY - JOUR
AU - Ito, Noboru
TI - On permutation groups of prime degree $p$ which contain (at least) two classes of conjugate subgroups of index $p$
JO - Rendiconti del Seminario Matematico della Università di Padova
PY - 1967
PB - Seminario Matematico of the University of Padua
VL - 38
SP - 287
EP - 292
LA - eng
KW - group theory
UR - http://eudml.org/doc/107222
ER -

References

top
  1. [1] R. Brauer, On permutation groups of prime degree and related classes of groups, Ann. of Math. (2) 44 (1943), 57-79. Zbl0061.03705MR8237
  2. [2] P. Dembowski - A. Wagner, Some characterizations of finite projective spaces, Arch. Math.11 (1960), 465-469. Zbl0104.14701MR143095
  3. [3] N. Ito, Über die Gruppen PSLn (q), die eine Untergruppe von Primzahlindex enthalten, Acta Sci. Math. Szeged21 (1960), 206-217. Zbl0096.01702MR142615
  4. [4] N. Ito, Transitive permutation groups of degree p = 2q + 1, p and q being prime numbers III, Trans. Amer. Math. Soc.116 (1965), 151-166. Zbl0139.01802MR193134
  5. [5] N. Ito, On a class of doubly, but not triply transitive permutation groups, to appear in Arch. Math. Zbl0166.28606MR223441
  6. [6] T.G. Ostrom - A. Wagner, On projective and affine planes with transitive collineation groups, Math. Zeitschr.7 (1959), 186-199. Zbl0085.14302MR110975
  7. [7] H.J. Ryser, Combinatorial mathematics, MAA (1963). Zbl0112.24806MR150048

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.