On permutation groups of prime degree which contain (at least) two classes of conjugate subgroups of index
Rendiconti del Seminario Matematico della Università di Padova (1967)
- Volume: 38, page 287-292
- ISSN: 0041-8994
Access Full Article
topHow to cite
topIto, Noboru. "On permutation groups of prime degree $p$ which contain (at least) two classes of conjugate subgroups of index $p$." Rendiconti del Seminario Matematico della Università di Padova 38 (1967): 287-292. <http://eudml.org/doc/107222>.
@article{Ito1967,
author = {Ito, Noboru},
journal = {Rendiconti del Seminario Matematico della Università di Padova},
keywords = {group theory},
language = {eng},
pages = {287-292},
publisher = {Seminario Matematico of the University of Padua},
title = {On permutation groups of prime degree $p$ which contain (at least) two classes of conjugate subgroups of index $p$},
url = {http://eudml.org/doc/107222},
volume = {38},
year = {1967},
}
TY - JOUR
AU - Ito, Noboru
TI - On permutation groups of prime degree $p$ which contain (at least) two classes of conjugate subgroups of index $p$
JO - Rendiconti del Seminario Matematico della Università di Padova
PY - 1967
PB - Seminario Matematico of the University of Padua
VL - 38
SP - 287
EP - 292
LA - eng
KW - group theory
UR - http://eudml.org/doc/107222
ER -
References
top- [1] R. Brauer, On permutation groups of prime degree and related classes of groups, Ann. of Math. (2) 44 (1943), 57-79. Zbl0061.03705MR8237
- [2] P. Dembowski - A. Wagner, Some characterizations of finite projective spaces, Arch. Math.11 (1960), 465-469. Zbl0104.14701MR143095
- [3] N. Ito, Über die Gruppen PSLn (q), die eine Untergruppe von Primzahlindex enthalten, Acta Sci. Math. Szeged21 (1960), 206-217. Zbl0096.01702MR142615
- [4] N. Ito, Transitive permutation groups of degree p = 2q + 1, p and q being prime numbers III, Trans. Amer. Math. Soc.116 (1965), 151-166. Zbl0139.01802MR193134
- [5] N. Ito, On a class of doubly, but not triply transitive permutation groups, to appear in Arch. Math. Zbl0166.28606MR223441
- [6] T.G. Ostrom - A. Wagner, On projective and affine planes with transitive collineation groups, Math. Zeitschr.7 (1959), 186-199. Zbl0085.14302MR110975
- [7] H.J. Ryser, Combinatorial mathematics, MAA (1963). Zbl0112.24806MR150048
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.