Sui gruppi abeliani ridotti che ammettono una unica topologia compatta

Adalberto Orsatti

Rendiconti del Seminario Matematico della Università di Padova (1970)

  • Volume: 43, page 341-347
  • ISSN: 0041-8994

How to cite

top

Orsatti, Adalberto. "Sui gruppi abeliani ridotti che ammettono una unica topologia compatta." Rendiconti del Seminario Matematico della Università di Padova 43 (1970): 341-347. <http://eudml.org/doc/107344>.

@article{Orsatti1970,
author = {Orsatti, Adalberto},
journal = {Rendiconti del Seminario Matematico della Università di Padova},
language = {ita},
pages = {341-347},
publisher = {Seminario Matematico of the University of Padua},
title = {Sui gruppi abeliani ridotti che ammettono una unica topologia compatta},
url = {http://eudml.org/doc/107344},
volume = {43},
year = {1970},
}

TY - JOUR
AU - Orsatti, Adalberto
TI - Sui gruppi abeliani ridotti che ammettono una unica topologia compatta
JO - Rendiconti del Seminario Matematico della Università di Padova
PY - 1970
PB - Seminario Matematico of the University of Padua
VL - 43
SP - 341
EP - 347
LA - ita
UR - http://eudml.org/doc/107344
ER -

References

top
  1. [1] Fuchs, L.: Abelian groups, Budapest1958. Zbl0091.02704MR106942
  2. [2] Fuchs, L.: On character groups of discrete abelian groups, Acta Math. Acad. Sci. Hung., 10 (1959), 133-140. Zbl0087.25603MR104729
  3. [3] Harrison, D.K.: Infinite abelian groups and homological methods, Ann. Math., 69 (1959), 366-391. Zbl0100.02901MR104728
  4. [4] Hulanicki, A.: Algebraic characterization of abelian divisible groups which admit compact topologies, Fund. Math.44 (1957), 192-197. Zbl0082.02604MR92101
  5. [5] Hulanicki, A.: Algebraic structure of compact abelian groups, Bull Acad. Pol. Sci., 10 (1962), 71-75. Zbl0107.26002MR95900
  6. [6] Kaplansky, I.: Infinite abelian groups, Ann Arbor1954. Zbl0194.04402MR65561
  7. [7] Orsatti, A.: Una caratterizzazione dei gruppi abeliani compatti o localmente compatti nella topologia naturale, Rend. Sem. Mat. Univ. Padova, 39 (1967), 219-225. Zbl0232.22012MR227308
  8. [8] Pontryagin, L.S.: Topological groups, 2nd Ed., New York1966. Zbl0022.17104MR201557

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.