Teoria di Lusternik-Schnirelman su varietà con bordo negli spazi di Hilbert
Rendiconti del Seminario Matematico della Università di Padova (1971)
- Volume: 45, page 337-353
- ISSN: 0041-8994
Access Full Article
topHow to cite
topReferences
top- [1] Browder, F.E.: Infinite dimensional manifolds and non linear elliptic eigenvalue problems, Ann. Math., 82 (1965), 459-477. Zbl0136.12002MR203249
- [2] Morse, M. - VAN SCHAACK, G. B.: The critical point theory under general boundary conditions, Ann. Math., 35 (1934), 545-571. Zbl0010.02801MR1503179JFM60.0533.01
- [3] Palais, R.S.: Lusternik-Schnirelmann theory on Banach manifolds, Topology, 5 (1966), 115-132. Zbl0143.35203MR259955
- [4] Palais, R.S.: Homotopy theory of infinite dimensional manifolds, Topology, 5 (1966), 1-16. Zbl0138.18302MR189028
- [5] Palais, R.S.: Morse theory on Hilbert monifolds, Topology, 2 (1963), 299-340. Zbl0122.10702MR158410
- [6] Palais, R.S. - SMALE, S.: A generalized Morse theory, Bull. Amer. Math. Soc., 70 (1964), 165-171. Zbl0119.09201MR158411
- [7] Rothe, E.H.: Critical point theory in Hilbert space under general boundary conditions, Jour. Math. Anal. Appl., 11 (1965), 357-409. Zbl0132.07902MR190951
- [8] Schwartz, J.T.: Generalizing the Lusternik-Schnirelman theory of critical points, Comm. Pure Appl. Math., 17 (1964), 307-315. Zbl0152.40801MR166796
- [9] Schwartz, J.T.: Non linear functional analysis, Gordon an Breach Science Publishers. Zbl0203.14501