Abelian groups whose endomorphism ring is linearly compact

Luigi Salce; Federico Menegazzo

Rendiconti del Seminario Matematico della Università di Padova (1975)

  • Volume: 53, page 315-325
  • ISSN: 0041-8994

How to cite

top

Salce, Luigi, and Menegazzo, Federico. "Abelian groups whose endomorphism ring is linearly compact." Rendiconti del Seminario Matematico della Università di Padova 53 (1975): 315-325. <http://eudml.org/doc/107555>.

@article{Salce1975,
author = {Salce, Luigi, Menegazzo, Federico},
journal = {Rendiconti del Seminario Matematico della Università di Padova},
language = {eng},
pages = {315-325},
publisher = {Seminario Matematico of the University of Padua},
title = {Abelian groups whose endomorphism ring is linearly compact},
url = {http://eudml.org/doc/107555},
volume = {53},
year = {1975},
}

TY - JOUR
AU - Salce, Luigi
AU - Menegazzo, Federico
TI - Abelian groups whose endomorphism ring is linearly compact
JO - Rendiconti del Seminario Matematico della Università di Padova
PY - 1975
PB - Seminario Matematico of the University of Padua
VL - 53
SP - 315
EP - 325
LA - eng
UR - http://eudml.org/doc/107555
ER -

References

top
  1. [B] N. Bourbaki, Eléments de mathématique, Algèbre Commutative, Chap. III-IV, Hermann, Paris (1971). Zbl1101.13300MR2272929
  2. [F 1] L. Fuchs, Infinite Abelian Groups, vol. II, Academic Press (1973). Zbl0257.20035MR349869
  3. [F 2] L. Fuchs, Recent results and problems in abelian groups. Topics in abelian groups, Chicago (1963). 
  4. [K] I. Kaplanski, Infinite Abelian Groups, Ann Arbour (1969). Zbl0194.04402
  5. [L 1] W. Liebert, Endomorphism rings of abelian p-groups. Études sur les groupes abéliens, Paris (1968), pp. 239-258. Zbl0185.06201MR242946
  6. [L 2] W. Liebert, Endomorphism rings of reduced torsion-free modules over complete discrete valuation rings, T.A.M.S., 169 (1972), pp. 347-363. Zbl0282.16016MR306268
  7. [M] A. Mader, The fully invariant subgroups of reduced algebraically compact groups, Publ. Math. Debrecen, 17 (1970), pp. 299-306. Zbl0232.20110MR302786

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.