Compactness methods for quasi-linear evolution-equations

Andrea Schiaffino

Rendiconti del Seminario Matematico della Università di Padova (1976)

  • Volume: 55, page 151-166
  • ISSN: 0041-8994

How to cite

top

Schiaffino, Andrea. "Compactness methods for quasi-linear evolution-equations." Rendiconti del Seminario Matematico della Università di Padova 55 (1976): 151-166. <http://eudml.org/doc/107586>.

@article{Schiaffino1976,
author = {Schiaffino, Andrea},
journal = {Rendiconti del Seminario Matematico della Università di Padova},
language = {eng},
pages = {151-166},
publisher = {Seminario Matematico of the University of Padua},
title = {Compactness methods for quasi-linear evolution-equations},
url = {http://eudml.org/doc/107586},
volume = {55},
year = {1976},
}

TY - JOUR
AU - Schiaffino, Andrea
TI - Compactness methods for quasi-linear evolution-equations
JO - Rendiconti del Seminario Matematico della Università di Padova
PY - 1976
PB - Seminario Matematico of the University of Padua
VL - 55
SP - 151
EP - 166
LA - eng
UR - http://eudml.org/doc/107586
ER -

References

top
  1. [1] M.S. Agranovich - M.I. Vishik, Problèmes elliptiques avec paramètre et problèmes paraboliques de type general, Uspehi Mat. Nauk, 19, no. 3 (1964), pp. 53-161 (Russian Math. Surv., 19, no. 3 (1964), pp. 53-157). Zbl0137.29602
  2. [2] G. Da Prato, Sommes d'applications non-linéaires, Ist. Naz. Alta Mat., RomaSymp. Math., 7 (1971). Zbl0234.47048
  3. [3] G. Da Prato - P. Grisvard, Sommes d'opérateurs linéaires et équations différentielles opérationnelles, Jour. de Math. Pures et Appl., 54 (1975). Zbl0315.47009MR442749
  4. [4] M. Iannelli, A note on some non-linear non-contraetion semigroup, Boll. U.M.I., no. 6 (1970), pp. 1015-1025. Zbl0207.14001MR276822
  5. [5] J.L. Lions, Quelques méthodes de résolution des problèmes anx limites non linéaires, Paris, Dunod (1969). Zbl0189.40603
  6. [6] J.L. Lions - E. Magenes, Problèmes aux limites non homogènes et applications, vol. 1 e 2, Paris, Dunod, 1968. Zbl0165.10801MR247243
  7. [7] P.H. Martinjr., Differential equations on closed subsets of a Banach space, Trans. Amer. Math. Soc., 179 (1973), pp. 399-414. Zbl0293.34092MR318991
  8. [8] P.H. Martinjr., Approximation and existence of solutions to ordinary differential equation in Banach space, Funk. Ekvac.16 (1973), pp. 195-211 Zbl0296.34058MR352641
  9. [9] P.H. Martinjr.Invariants sets for perturbed semigroups of linear operatorsAnn. di Mat. pura e Appl., 105 (1975), pp. 551-559. Zbl0315.34074MR390414
  10. [10] M. Nagumo, Über die laga der Integralkurnen gewohnlicher Differentialglerchungen, Proc. Phys.-Math. Soc. Japan, 24 (1942), pp. 551-559. Zbl0061.17204MR15180
  11. [11] G.F. Webb, Continuous nonlinear perturbations of linear accretive operators in Banach spaces, J. Funct. Anal., 10 (1972), pp. 191-203. Zbl0245.47052MR361965

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.