Rings radical over P.I. subrings

I. N. Herstein; Louis H. Rowen

Rendiconti del Seminario Matematico della Università di Padova (1978)

  • Volume: 59, page 51-55
  • ISSN: 0041-8994

How to cite

top

Herstein, I. N., and Rowen, Louis H.. "Rings radical over P.I. subrings." Rendiconti del Seminario Matematico della Università di Padova 59 (1978): 51-55. <http://eudml.org/doc/107689>.

@article{Herstein1978,
author = {Herstein, I. N., Rowen, Louis H.},
journal = {Rendiconti del Seminario Matematico della Università di Padova},
keywords = {radical extensions; prime ring; nilpotent elements; polynomial identity; Köthe conjecture},
language = {eng},
pages = {51-55},
publisher = {Seminario Matematico of the University of Padua},
title = {Rings radical over P.I. subrings},
url = {http://eudml.org/doc/107689},
volume = {59},
year = {1978},
}

TY - JOUR
AU - Herstein, I. N.
AU - Rowen, Louis H.
TI - Rings radical over P.I. subrings
JO - Rendiconti del Seminario Matematico della Università di Padova
PY - 1978
PB - Seminario Matematico of the University of Padua
VL - 59
SP - 51
EP - 55
LA - eng
KW - radical extensions; prime ring; nilpotent elements; polynomial identity; Köthe conjecture
UR - http://eudml.org/doc/107689
ER -

References

top
  1. [1] C.C. Faith, Radical extensions of rings, Proc. A.M.S., 12 (1961), pp. 274-283. Zbl0113.02804MR120250
  2. [2] B. Felzenswalb, Rings radical over subrings, Israel J. Math., 23, No. 2 (1976), pp. 156-164. Zbl0324.16004MR399160
  3. [3] I.N. Herstein, A theorem on rings, CaandianJ. Math., 5 (1953), pp. pp. 238-241. Zbl0051.02502MR53082
  4. [4] I.N. Herstein, On the hypercenter of a ring, Jour. ofAlgebra, 36 (1975), pp. 151-157. Zbl0313.16036MR371962
  5. [5] I.N. Herstein, Rings with Involution, Univ. of Chicago Press, Chicago, 111. 1976. Zbl0343.16011MR442017
  6. [6] I. Kaplansky, A theorem on division rings, Canadian J. Math., 3 (1951), pp. 290-292. Zbl0043.03701MR42389
  7. [7] A. Lihtman, Rings that are radical over a commutative subring, Math. Sbornik (N.S.), 83 (1970), pp. 513-523. Zbl0221.16005MR271140

NotesEmbed ?

top

You must be logged in to post comments.