Bell polynomials and degenerate stirling numbers
Rendiconti del Seminario Matematico della Università di Padova (1979)
- Volume: 61, page 203-219
- ISSN: 0041-8994
Access Full Article
topHow to cite
topReferences
top- [1] E.T. Bell, Exponential polynomials, Ann. of Math., 35 (1934), pp. 258-277. Zbl0009.21202MR1503161
- [2] L. Carlitz, A degenerate Staudt-Clausen theorem, Arch. Math., 7 (1956), pp. 28-33. Zbl0070.04003MR74436
- [3] L. Carlitz, Degenerate Stirling, Bernoulli and Eulerian numbers, to be published. Zbl0404.05004
- [4] L. Carlitz, Set partitions, Fibonacci Quart., 14 (1976), pp. 327-342. Zbl0362.05024MR427087
- [5] L. Comtet, Advanced Combinatories, Reidel, Dordrecht/Boston, 1974. Zbl0283.05001
- [6] E.A. Enneking - J. C. AHUJA, Generalized Bell numbers, Fibonacci Quart., 14 (1976), pp. 67-73. Zbl0353.10013MR414375
- [7] F.T. Howard, Associated Stirling numbers, Fibonacci Quart., to appear. Zbl0443.10007MR600368
- [8] F.T. Howard, Numbers generated by the reciprocal of ex — x — 1, Math. Comp., 31 (1977), pp. 581-598. Zbl0351.10010MR439741
- [9] J. Riordan, An Introduction to Combinatorial Analysis, Wiley, New York, 1958. Zbl0078.00805MR96594
- [10] R.F. Tate - R.L. Goen, Minimum variance unbiased estimation for the truncated Poisson distribution, Ann. of Math. Stat., 29 (1958), pp. 755-765. Zbl0086.35404MR93849
- [11] L. Toscano, Numeri di Stirling generalizzati, operatori differenziali e polinomi ipergeometrici, Commentat. Pontificia Ac. Sci., 3 (1939), pp. 721-757. MR3879JFM65.0296.03
- [12] L. Toscano, Some results for generalized Bernoulli, Euler and Stirling numbers, Fibonacci Quart., 16 (1978), pp. 103-112. Zbl0377.10009MR485418
- [13] V. Uppuluri - J. Carpenter, Numbers generated by the function egp (1 — ex), Fibonacci Quart., 7 (1969), pp. 437-447. Zbl0191.32801MR258648