Linear abstract integro-differential equations of hyperbolic type in Hilbert spaces

G. Da Prato; M. Iannelli

Rendiconti del Seminario Matematico della Università di Padova (1980)

  • Volume: 62, page 191-206
  • ISSN: 0041-8994

How to cite

top

Da Prato, G., and Iannelli, M.. "Linear abstract integro-differential equations of hyperbolic type in Hilbert spaces." Rendiconti del Seminario Matematico della Università di Padova 62 (1980): 191-206. <http://eudml.org/doc/107744>.

@article{DaPrato1980,
author = {Da Prato, G., Iannelli, M.},
journal = {Rendiconti del Seminario Matematico della Università di Padova},
keywords = {hyperbolic type; existence; Hilbert space},
language = {eng},
pages = {191-206},
publisher = {Seminario Matematico of the University of Padua},
title = {Linear abstract integro-differential equations of hyperbolic type in Hilbert spaces},
url = {http://eudml.org/doc/107744},
volume = {62},
year = {1980},
}

TY - JOUR
AU - Da Prato, G.
AU - Iannelli, M.
TI - Linear abstract integro-differential equations of hyperbolic type in Hilbert spaces
JO - Rendiconti del Seminario Matematico della Università di Padova
PY - 1980
PB - Seminario Matematico of the University of Padua
VL - 62
SP - 191
EP - 206
LA - eng
KW - hyperbolic type; existence; Hilbert space
UR - http://eudml.org/doc/107744
ER -

References

top
  1. [1] V. Barbu, Nonlinear Volterra equations in a Hilbert space, SIAM J. Math. Anal., 6 (1975), pp. 728-741. Zbl0322.45012MR377620
  2. [2] V. Barbu, Nonlinear Volterra integro-differential equations in Hilbert space, Sem. Mat. Bari, 143 (1976). Zbl0365.45001
  3. [3] H. Brézis, Opérateurs maximaux monotones et sémi-groupes de contractions dans les espaces de Hilbert, Math. Studies, 5, North Holland (1973). Zbl0252.47055MR348562
  4. [4] M.G. Crandall - S.O. Londen - J.A. Nohel, An abstract nonlinear Volterra integro-differential equation, J. Math. Anal. Appl., 64 (1978), pp. 701-735. Zbl0395.45023MR500052
  5. [5] C.M. Dafermos, An abstract Volterra equation with applications to linear viscoelasticity, J. Diff. Eq., 7 (1970), pp. 554-569. Zbl0212.45302MR259670
  6. [6] C.M. Dafermos - J.A. Nohel, Energy methods for nonlinearhyperbolic integro-differential equations, Comm. PDE, 4 (1979), pp. 219-278. Zbl0464.45009MR522712
  7. [7] G. Da Prato - P. Grisvard, Sommes d'opérateurs linéaires et équations differentielles opérationnelles, J. Math. Pures et Appl., 54 (1975), pp. 305-387. Zbl0315.47009MR442749
  8. [8] G. Da Prato - M. Iannelli, On a method to study abstract evolution equations in the hyperbolic case, Comm. PDE, 1 (1976), pp. 585-608. Zbl0358.34063MR442750
  9. [9] G. Da Prato - M. Iannelli, Linear integro-differential equations in Banach spaces, Rend. Sem. Mat. Padova, 62 (1980), pp. 207-219. Zbl0451.45014MR582951
  10. [10] S.O. Londen, On an integral equation in a Hilbert space, SIAM J. Math. Anal., 8 (1977), pp. 950-970. Zbl0379.45011MR511229
  11. [11] S.O. Londen, On an integro-differential Volterra equation with a maximal monotone mapping, J. Diff. Eq., 27 (1978), pp. 405-420. Zbl0364.45003MR499976
  12. [12] R.C. Mac Camy, Approximations for a class of functional differential equations, SIAM J. Appl. Math., 23 (1972), pp. 70-83. Zbl0237.34102
  13. [13] R.C. Mac Camy, Stability theorems for a class of functional differential equations, SIAM J. Appl. Math., 30 (1976), pp. 557-576. Zbl0346.34059MR404818
  14. [14] R.C. Mac Camy - J.S.W. Wong, Stability theorems for some functiona. equations, Trans. AMS, 164 (1972), pp. 1-37. Zbl0274.45012MR293355
  15. [15] R.K. Miller - R. L. WHEELER, Asymptotic behavior for a linear Volterra integral equation in Hilbert space, J. Diff. Eq., 23 (1977), pp. 270-284. Zbl0341.45017MR440313

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.