Löb operators and interior operators

Giuliano Mazzanti; Massimo Mirolli

Rendiconti del Seminario Matematico della Università di Padova (1981)

  • Volume: 65, page 77-84
  • ISSN: 0041-8994

How to cite

top

Mazzanti, Giuliano, and Mirolli, Massimo. "Löb operators and interior operators." Rendiconti del Seminario Matematico della Università di Padova 65 (1981): 77-84. <http://eudml.org/doc/107830>.

@article{Mazzanti1981,
author = {Mazzanti, Giuliano, Mirolli, Massimo},
journal = {Rendiconti del Seminario Matematico della Università di Padova},
language = {eng},
pages = {77-84},
publisher = {Seminario Matematico of the University of Padua},
title = {Löb operators and interior operators},
url = {http://eudml.org/doc/107830},
volume = {65},
year = {1981},
}

TY - JOUR
AU - Mazzanti, Giuliano
AU - Mirolli, Massimo
TI - Löb operators and interior operators
JO - Rendiconti del Seminario Matematico della Università di Padova
PY - 1981
PB - Seminario Matematico of the University of Padua
VL - 65
SP - 77
EP - 84
LA - eng
UR - http://eudml.org/doc/107830
ER -

References

top
  1. [1] C. Bernardi, On the equational class of diagonalizable algebra (the algebraization of the theory which express theorem), Studia Logica, (4) 34 (1975), pp. 321-331, Zbl0322.02033MR460113
  2. [2] G. Birkhoff, Lattice Theory, 3rd ed., Am. Math. Soc. Coll. Publ., vol. XXV (1967). MR227053
  3. [3] P.R. Halmos, Algebraic logic. - I: Monadic Boolean algebras. Compositio Mathematicae, 12 (1955), pp. 217-249 (reprinted in Algebraic logic, Chelsea Publ. comp.N. Y., 1962). Zbl0087.24505MR78304
  4. [4] B. Jonsson - A. Tarski, Boolean algebras with operators, Part I, American Mathematical Journal, 13 (1951), pp. 891-936. Zbl0045.31505MR44502
  5. [5] R. Magari, Representation and duality theory for diagonalizable algebras (the algebraization of the theories which express Theor; IV), Studia Logica, (4) 34 (1975), pp. 305-313. Zbl0355.02021MR460111
  6. [6] K. Segerberg, An Essay in Classical Model Logic, Vol. 2, Filosofiska Studier, Uppsala1971. Zbl0311.02028MR339999
  7. [7] C. Smorynski, The derivability condition and Löb's theorem; a short course in modal logic, to appear. 
  8. [8] R. Goldblatt, Aritmetical necessity, probability and intuitionistie logic, Theoria, 44 (1978, pp. 38-74. Zbl0409.03011MR537120

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.