Classes of commutative rings characterized by going-up and going-down behavior
Rendiconti del Seminario Matematico della Università di Padova (1982)
- Volume: 66, page 113-127
- ISSN: 0041-8994
Access Full Article
topHow to cite
topDobbs, David E., and Fontana, Marco. "Classes of commutative rings characterized by going-up and going-down behavior." Rendiconti del Seminario Matematico della Università di Padova 66 (1982): 113-127. <http://eudml.org/doc/107834>.
@article{Dobbs1982,
author = {Dobbs, David E., Fontana, Marco},
journal = {Rendiconti del Seminario Matematico della Università di Padova},
keywords = {Baer ring; prime spectrum; going-down; going-up; Krull dimension zero; von Neumann regular rings; TYS-spaces; TF-spaces; pullback; pm-ring},
language = {eng},
pages = {113-127},
publisher = {Seminario Matematico of the University of Padua},
title = {Classes of commutative rings characterized by going-up and going-down behavior},
url = {http://eudml.org/doc/107834},
volume = {66},
year = {1982},
}
TY - JOUR
AU - Dobbs, David E.
AU - Fontana, Marco
TI - Classes of commutative rings characterized by going-up and going-down behavior
JO - Rendiconti del Seminario Matematico della Università di Padova
PY - 1982
PB - Seminario Matematico of the University of Padua
VL - 66
SP - 113
EP - 127
LA - eng
KW - Baer ring; prime spectrum; going-down; going-up; Krull dimension zero; von Neumann regular rings; TYS-spaces; TF-spaces; pullback; pm-ring
UR - http://eudml.org/doc/107834
ER -
References
top- [1] G. Artico - U. Marconi, On the compactness of minimal spectrum, Rend. Sem. Mat. Univ. Padova, 56 (1977), pp. 79-84. Zbl0381.13003MR480463
- [2] C.E. Aull - W.J. Thron, Separation axioms between T0 and T1, Indagat. Math., 24 (1962), pp. 26-37. Zbl0108.35402MR138082
- [3] M. Auslander, On regular group rings, Proc. Amer. Math. Soc., 8 (1957), pp. 658-664. Zbl0079.26703MR87670
- [4] N. Bourbaki, Algèbre Commutative, Chs. 1-2, Hermann, Paris, 1961.
- [5] A. Conte, Proprietà di separazione della topologia di Zariski di uno schema, Rend. Ist. Lombardo Sc. A, 106 (1972), pp. 79-111. Zbl0254.14002MR349670
- [6] G. DeMARCO - A. ORSATTI, Commutative rings in which every prime ideal is contained in a unique maximal ideal, Proc. Amer. Math. Soc., 30 (1971), pp. 459-466. Zbl0207.05001MR282962
- [7] D.E. Dobbs - I. J. PAPICK, Going-down: a survey, Nieuw Arch. Wisk., 26 (1978), pp. 255-291. Zbl0383.13005MR491656
- [8] M. Fontana, Topologically defined classes of commutative rings, Annali Mat. Pura Appl., 123 (1980), pp. 331-355. Zbl0443.13001MR581935
- [9] M. Harada, Note on the dimension of modules and algebras, J. Inst. Polytech. Osaka City Univ.A, 7 (1956), pp. 17-27. Zbl0079.26702MR81269
- [10] B.W. Irlbeck, Finitely generated projective ideals in commutative rings, J. Reine Angew. Math., 298 (1978), pp. 98-100. Zbl0366.13003MR485829
- [11] I. Kaplansky, Commutative Rings, Allyn and Bacon, Boston, 1970. Zbl0203.34601MR254021
- [12] J.A. Kist, Minimal prime ideals in commutative semigroups, Proc. London Math. Soc., (3), 13 (1963), pp. 31-50. Zbl0108.04004MR143837
- [13] W.J. Lewis, The spectrum of a ring as a partially ordered set, J. Algebra, 25 (1973), pp. 419-434. Zbl0266.13010MR314811
- [14] W.J. Lewis - J. OHM, The ordering of Spec (R), Canad. J. Math., 28 (1976), pp. 820-835. Zbl0313.13003MR409428
- [15] T.P. Speed, A note on commutative Baer rings, J. Austral. Math. Soc., 14 (1972), pp. 257-263. Zbl0242.13003MR318120
- [16] W.V. Vasconcelos, Finiteness in projective ideals, J. Algebra, 25 (1973), pp. 269-278. Zbl0254.13012MR314828
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.