Stability and asymptotic equivalence of perturbations of nonlinear systems of differential equations

M. E. Lord

Rendiconti del Seminario Matematico della Università di Padova (1982)

  • Volume: 67, page 1-11
  • ISSN: 0041-8994

How to cite

top

Lord, M. E.. "Stability and asymptotic equivalence of perturbations of nonlinear systems of differential equations." Rendiconti del Seminario Matematico della Università di Padova 67 (1982): 1-11. <http://eudml.org/doc/107859>.

@article{Lord1982,
author = {Lord, M. E.},
journal = {Rendiconti del Seminario Matematico della Università di Padova},
keywords = {asymptotic equivalence; perturbations; nonlinear variation of constants formula; vector differential equations},
language = {eng},
pages = {1-11},
publisher = {Seminario Matematico of the University of Padua},
title = {Stability and asymptotic equivalence of perturbations of nonlinear systems of differential equations},
url = {http://eudml.org/doc/107859},
volume = {67},
year = {1982},
}

TY - JOUR
AU - Lord, M. E.
TI - Stability and asymptotic equivalence of perturbations of nonlinear systems of differential equations
JO - Rendiconti del Seminario Matematico della Università di Padova
PY - 1982
PB - Seminario Matematico of the University of Padua
VL - 67
SP - 1
EP - 11
LA - eng
KW - asymptotic equivalence; perturbations; nonlinear variation of constants formula; vector differential equations
UR - http://eudml.org/doc/107859
ER -

References

top
  1. [1] V.M. Alekseev, An estimate for perturbations of the solutions of ordinary differential equations, Vestnik Moscov Univ. Ser.1, Math. Mek., No. 2 (1961), pp. 28-36. MR125293
  2. [2] F. Brauer, Perturbations of nonlinear systems of differential equations, J. Math. Anal. Appl., 14 (1966), pp. 198-206. Zbl0156.09805MR192132
  3. [3] F. Brauer, Perturbations of nonlinear systems of differential equations, II, J. Math. Anal. Appl., 17 (1967), pp. 418-434. Zbl0238.34083MR203181
  4. [4] F. Brauer, Some Stability and Perturbation Problems for Differential and Integral Equations, Instituto de Matematica Pura e Applicada, Monografias de Matematica, No. 25, Rio de Janeigo, 1976. 
  5. [5] V. Lakshmikantham - S. Leela, Differential and Integral Inequalities, Academic Press, New York, 1969. Zbl0177.12403
  6. [6] M. Lord - A.R. Mitchell, A new approach to the method of nonlinear variation of constants, Appl. Math. and Comp., 4 (1978), pp. 95-105. Zbl0375.34033MR477238
  7. [7] M. Lord - S. Bernfeld, A nonlinear variation of constants method for integro-differential and integral equations, Appl. Math. and Comp., 4 (1978), pp. 1-14. Zbl0374.45008MR467207
  8. [8] M. Lord, The method of nonlinear variation of constants for difference equations, J. Inst. Math. Appl., 23 (1979), pp. 285-290. Zbl0397.39007MR533226
  9. [9] J. Martin - R. STRUBLE, Asymptotic equivalence of nonlinear systems, J. Diff. Eq., 6 (1969), pp. 578-596. Zbl0218.34036MR252768

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.