Sul problema della biforcazione generalizzata di Hopf per sistemi periodici

L. Salvadori; F. Visentin

Rendiconti del Seminario Matematico della Università di Padova (1982)

  • Volume: 68, page 129-147
  • ISSN: 0041-8994

How to cite

top

Salvadori, L., and Visentin, F.. "Sul problema della biforcazione generalizzata di Hopf per sistemi periodici." Rendiconti del Seminario Matematico della Università di Padova 68 (1982): 129-147. <http://eudml.org/doc/107867>.

@article{Salvadori1982,
author = {Salvadori, L., Visentin, F.},
journal = {Rendiconti del Seminario Matematico della Università di Padova},
keywords = {perturbed system; Jacobian matrix; Taylor series; h-stability; h- instability; vector differential systems; dissipative force},
language = {ita},
pages = {129-147},
publisher = {Seminario Matematico of the University of Padua},
title = {Sul problema della biforcazione generalizzata di Hopf per sistemi periodici},
url = {http://eudml.org/doc/107867},
volume = {68},
year = {1982},
}

TY - JOUR
AU - Salvadori, L.
AU - Visentin, F.
TI - Sul problema della biforcazione generalizzata di Hopf per sistemi periodici
JO - Rendiconti del Seminario Matematico della Università di Padova
PY - 1982
PB - Seminario Matematico of the University of Padua
VL - 68
SP - 129
EP - 147
LA - ita
KW - perturbed system; Jacobian matrix; Taylor series; h-stability; h- instability; vector differential systems; dissipative force
UR - http://eudml.org/doc/107867
ER -

References

top
  1. [1] A. Andronov - E. Leontovich - I. Gordon - A. Maier, Theory of bifurcations of dynamical systems in the plane, Israel Program of Scientifie Translations, Jerusalem (1973). 
  2. [2] S.R. Bernfeld - P. Negrini - L. Salvadori, Qnasi-invariant manifolds, stability and generalized Hopf bifureation, Ann. Mat. Pura e Appl., in corso di stampa. Zbl0493.34030
  3. [3] N. Chafee, Generalized Hopf bifurcation and perturbations in a full neighborhood of a given vector field, Indiana Univ. Math. J., 27 (1978). Zbl0366.34037MR488150
  4. [4] J.C. De Oliveira - J.K. Hale, Dynamic behavior from bifurcation equations, Tohoku Math., Zbl0454.34035
  5. [5] J.K. Hale, Stability from the bifurcation function, Proc. Midwest Seminar on Differential Equations, Okla, St. Univ. (Oct. 1979). Zbl0588.34043MR580781
  6. [6] A.M. Liapunov, Probleme général de la stabilité du mouvement, Ann. of Math. Studies, 17, Princeton Univ. Press, New Jersey (1947). Zbl0031.18403MR21186
  7. [7] V. Moauro, Bifurcation of closed orbits from a limit cycle in R2, Rend. Seminario Matematico, Univ. Padova, 65 (1981). Zbl0486.34025MR653301
  8. [8] L. Salvadori - F. Visentin, Perturbed dynamical systems: displacement and bifurcation functions, J. Math. Anal. and Appl., 87 (1982), p. 1. Zbl0489.34055MR653617

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.