On a property of the one-dimensional torus

D. Dikranjan; N. Rodinò

Rendiconti del Seminario Matematico della Università di Padova (1983)

  • Volume: 69, page 277-288
  • ISSN: 0041-8994

How to cite

top

Dikranjan, D., and Rodinò, N.. "On a property of the one-dimensional torus." Rendiconti del Seminario Matematico della Università di Padova 69 (1983): 277-288. <http://eudml.org/doc/107901>.

@article{Dikranjan1983,
author = {Dikranjan, D., Rodinò, N.},
journal = {Rendiconti del Seminario Matematico della Università di Padova},
keywords = {minimal Hausdorff topological group},
language = {eng},
pages = {277-288},
publisher = {Seminario Matematico of the University of Padua},
title = {On a property of the one-dimensional torus},
url = {http://eudml.org/doc/107901},
volume = {69},
year = {1983},
}

TY - JOUR
AU - Dikranjan, D.
AU - Rodinò, N.
TI - On a property of the one-dimensional torus
JO - Rendiconti del Seminario Matematico della Università di Padova
PY - 1983
PB - Seminario Matematico of the University of Padua
VL - 69
SP - 277
EP - 288
LA - eng
KW - minimal Hausdorff topological group
UR - http://eudml.org/doc/107901
ER -

References

top
  1. [B] B. Banaschewski, Minimal topological algebras, Math. Ann., 211 (1974), pp. 107-114. Zbl0275.46043MR357520
  2. [D1] D. Dikranjan, A topological characterization of p-adic numbers and an application to minimal Galois extensions (to appear). Zbl0624.22004
  3. [D2] D. Dikranjan, Minimal topologies on divisible Abelian groups (to appear). 
  4. [D3] D. Dikranjan, On a class of finite-dimensional compact Abelian groups (manuscript). 
  5. [DP] D. Dikranjan - Iv. Prodanov, A class of compact Abelian groups, Ann. de l'Univ. de Sofia, Fac. de Math., 70 (1975-1976), pp. 191-206. Zbl0488.22003MR649305
  6. [DS] D. Dikranjan - L. Stojanov, Criterion for minimality of all subgroups of a topological Abelian group, Comp. Rend. de l'Acad. Bulg. Sci., 34, no. 5 (1981), pp. 635-638. Zbl0478.22003MR638902
  7. [Do] Doitchinov, Produits de groupes topologiques minimaux, Bull. Sci. Math., 97 (1972), pp. 59-64. Zbl0236.22002MR308323
  8. [HR] E. Hewitt - K. Ross, Abstract harmonic analysis, Springer-Verlag, 1963. Zbl0115.10603
  9. [M] A. Mutylin, Completely simple topological commutative rings (in Russian), Mat. Zametki, 5 (1969), pp. 161-171. Zbl0316.13013MR242905
  10. [P1] Iv. Prodanov, Precompact minimal group topologies on Abelian groups, Comp. Rend. de l'Acad. Bulg. de Sci., 26 (1973), pp. 1287-1288. Zbl0323.22004MR330341
  11. [P2] Iv. Prodanov, Precompact minimal group topologies and p-adic numbers, Ann. de l'Univ. de Sofia, Fac. de Math., 66 (1971-1972), pp. 249-266. Zbl0329.22002MR412323
  12. [P3] Iv. Prodanov, Minimal topologies on countable Abelian groups, Ann. de l'Univ de Sofia, Fac. de Math., 70 (1975-1976). Zbl0488.22004MR649300
  13. [P4] Iv. Prodanov, Minimal and maximal topologies on Abelian groups, Colloq. Math. Soc. János Bolyai23, Topology, Budapest (Hungary), 1978, pp. 985-997. Zbl0452.22002MR588846
  14. [P5] Iv. Prodanov, Some minimal group topologies are precompact, Math. Ann., 227 (1977), pp. 117-125. Zbl0343.22001MR480837
  15. [P6] Iv. Prodanov, Elementary example of a group without characters, Proc. 9th Spring Confer. Math., Sl. Brjag (1980), pp. 203-208. Zbl0569.22004
  16. [S1] L. Stojanov, Weak periodicity and minimality of topological groups (to appear). Zbl0637.22001MR893716
  17. [S2] L. Stojanov, Cardinalities of minimal Abelian groups, Proc. 10th Spring Confer. Math., Sl. Brjag (1981), pp. 203-208. Zbl0571.22003
  18. [S3] L. Stojanov, Some minimal Abelian groups are precompact, Comp. Rend. de l'Acad. Bulg. de Sci., 34 (1981), pp. 473-475. Zbl0472.22001MR624713
  19. [S4] L. Stojanov, On products of minimal and totally minimal groups, Proc. 11th Spring Confer. Math., Sl. Brjag (1982), pp. 287-294. Zbl0528.22001
  20. [St] R. StephensonJr., Minimal topological groups, Math. Ann., 192 (1971), pp. 193-195. Zbl0206.31601MR286934

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.