Straightening of a noncylindrical region and evolution equations

Antonio Bove; Bruno Franchi; Enrico Obrecht

Rendiconti del Seminario Matematico della Università di Padova (1984)

  • Volume: 71, page 209-216
  • ISSN: 0041-8994

How to cite

top

Bove, Antonio, Franchi, Bruno, and Obrecht, Enrico. "Straightening of a noncylindrical region and evolution equations." Rendiconti del Seminario Matematico della Università di Padova 71 (1984): 209-216. <http://eudml.org/doc/107934>.

@article{Bove1984,
author = {Bove, Antonio, Franchi, Bruno, Obrecht, Enrico},
journal = {Rendiconti del Seminario Matematico della Università di Padova},
keywords = {geometrical method; evolution equations; noncylindrical region; time- preserving diffeomorphism},
language = {eng},
pages = {209-216},
publisher = {Seminario Matematico of the University of Padua},
title = {Straightening of a noncylindrical region and evolution equations},
url = {http://eudml.org/doc/107934},
volume = {71},
year = {1984},
}

TY - JOUR
AU - Bove, Antonio
AU - Franchi, Bruno
AU - Obrecht, Enrico
TI - Straightening of a noncylindrical region and evolution equations
JO - Rendiconti del Seminario Matematico della Università di Padova
PY - 1984
PB - Seminario Matematico of the University of Padua
VL - 71
SP - 209
EP - 216
LA - eng
KW - geometrical method; evolution equations; noncylindrical region; time- preserving diffeomorphism
UR - http://eudml.org/doc/107934
ER -

References

top
  1. [1] J. Chazarain - A. Piriou, Introduction à la théorie des équations aux dérivées partielles linéaires, Gauthier-Villars, Paris, 1981. Zbl0446.35001MR598467
  2. [2] P. Grisvard, Equations différentielles abstraites, Ann. Sci. Ec. Norm. Sup., (4), 2 (1969), pp. 311-395. Zbl0193.43502MR270209
  3. [3] M.W. Hirsch, Differential Topology, Springer, New York - Heidelberg- Berlin (1976). Zbl0356.57001MR448362
  4. [4] J. Kato, Mixed Problems of Hyperbolic Equations in a General Domain, Proc. Japan Acad., 47 (1971), pp. 67-70. Zbl0218.35058MR289948
  5. [5] H.O. Kreiss, Initial Boundary Value Problems for Hyperbolic Systems, Comm. Pure Appl. Math., 23 (1970), pp. 277-298. Zbl0193.06902MR437941
  6. [6] O.A. Ladyzenskaja - V.A. Solonnikov - N.N. Ural'ceva, Linear and Quasilinear Equations of Parabolic Type, Moscow (1967), Russian ; Engl. transl.: Amer. Math. Soc., Providence, R.I., (1968). MR241822
  7. [7] J.L. Lions - E. Magenes, Problèmes aux limites non homogènes et applications, vol. 2, Dunod, Paris (1968). Zbl0165.10801MR247244
  8. [8] J.B. Rauch - F.J. MasseyIII, Differentiability of Solutions to Hyperbolic Initial-Boundary Value Problems, Trans. Amer. Math. Soc., 189 (1974), pp. 303-318. Zbl0282.35014MR340832
  9. [9] V. Rohlin - D. Fuchs, A First Course in Topology. Geometrical Chapters, Nauka, Moscow (1977), Russian; French transl.: Mir, Moscow (1981). 
  10. [10] V.A. Solonnikov, On Boundary Value Problems for Linear Parabolic Systems of Differential Equations of General Form, Trudy Mat. Inst. im. Stekl., 83 (1965); Engl. transl.: Proc. Stekl. Inst. Math., 83 (1967), pp. 1-184. Zbl0164.12502MR211083
  11. [11] T. Miyakawa - Y. Teramoto, Existence and Periodicity of Weak Solutions of the Navier-Stokes Equations in a Time Dependent Domain, Hiroshima Math. J., 12 (1982), pp. 513-528. Zbl0526.35068MR676555
  12. [12] Y. Teramoto, On Asymptotic Behavior of Solutions for the Navier-Stokes Equations in a Time Dependent Domain, Math. Z., 186 (1984), pp. 29-40. Zbl0524.35087

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.