A Stefan problem for the heat equation subject to an integral condition

Elena Comparini; Domingo A. Tarzia

Rendiconti del Seminario Matematico della Università di Padova (1985)

  • Volume: 73, page 119-136
  • ISSN: 0041-8994

How to cite

top

Comparini, Elena, and Tarzia, Domingo A.. "A Stefan problem for the heat equation subject to an integral condition." Rendiconti del Seminario Matematico della Università di Padova 73 (1985): 119-136. <http://eudml.org/doc/107971>.

@article{Comparini1985,
author = {Comparini, Elena, Tarzia, Domingo A.},
journal = {Rendiconti del Seminario Matematico della Università di Padova},
keywords = {stability; Stefan problem; nonlinear integral equation; unique solution; contraction},
language = {eng},
pages = {119-136},
publisher = {Seminario Matematico of the University of Padua},
title = {A Stefan problem for the heat equation subject to an integral condition},
url = {http://eudml.org/doc/107971},
volume = {73},
year = {1985},
}

TY - JOUR
AU - Comparini, Elena
AU - Tarzia, Domingo A.
TI - A Stefan problem for the heat equation subject to an integral condition
JO - Rendiconti del Seminario Matematico della Università di Padova
PY - 1985
PB - Seminario Matematico of the University of Padua
VL - 73
SP - 119
EP - 136
LA - eng
KW - stability; Stefan problem; nonlinear integral equation; unique solution; contraction
UR - http://eudml.org/doc/107971
ER -

References

top
  1. [1] J.R. Cannon, The solution of the Heat Equation Subject to the Specification of Energy, Quart. Appl. Math., 21 (1963). Zbl0173.38404MR160437
  2. [2] N.I. Ionkin, Solution of a boundary value problem in heat conduction with a nonclassical boundary condition, Diff. Equation s, 13 (1977). Zbl0403.35043MR603291
  3. [3] J.R. Cannon - J. Van Der Hoek, The one phase Stefan Problem subject to the Specification of Energy, Jour. of Math. Anal. and Appl., 86 (1982). Zbl0508.35074MR649871
  4. [4] A. Friedmann, Free Boundary Problems for Parabolic Equations, I: Melting of Solids, Journal of Math. and Mec., 8, no. 4 (1959). Zbl0089.07801MR144078
  5. [5] B. Sherman, A. FreeBoundary Problem for the heat equation with prescribed flux at both fixed face and melting interface, Quart. Appl. Math., 25 (1967). Zbl0158.11904MR213104
  6. [6] J.R. Cannon - J. Van Der Hoek, The existence of and a continuous dependence result for the solution of the heat equation subject to the specification of energy, Suppl. B.U.M.I., 1 (1981). Zbl0538.35038MR641765
  7. [7] D.G. Schaefer, A new proof of the infinite differentiability of the Free Boundary in the Stefan Problem, Jour. ofDiff. Eq., 20 (1976). Zbl0314.35044MR390499
  8. [8] A. Fasano - M. Primicerio, Cauchy type free boundary problems for nonlinear parabolic equations, Riv. Mat. Univ. Parma, (4), 5 (1979). Zbl0699.35148MR584232
  9. [9] B. Sherman, Continuous Dependence and DifferentiabilityProperties of the Solution of a Free Boundary Problem for the Heat Equation, Quart. Appl. Math., 27 (1970). Zbl0191.39501MR509051
  10. [10] A. Fasano - M. Primicerio, La diffusione del calore in uno strato di spessore variabile in presenza di scambi termici non lineari con l'ambiente, I, Rend. Sem. Mat. Univ. Padova, 50 (1973). Zbl0278.35046MR366241
  11. [11] O.A. Ladyzenskaja - V.A. Solonnikov - N.N. Ural'ceva, Linear and quasilinear equations of Parabolic Type, A.M.S. Tranl., 23 (1968). MR241822
  12. [12] A. Fasano - M. Primicerio, Free Boundary Problems for Nonlinear Parabolic Equations with Nonlinear Free Boundary Conditions, J. Math. Anal. Appl., 72 (1979). Zbl0421.35080MR552335
  13. [13] A. Friedmann, Partial Differential Equation of Parabolic Type, Prentice Hall, Englewood Cliffs, N.J. (1964). Zbl0144.34903
  14. [14] E. Comparini - R. Ricci - D.A. Tarzia, Remarks on a one-dimensional Stefan problem related to the diffusion-consumption model, to appear on Z.A.M.M. Zbl0558.76092MR778023
  15. [15] A. Fasano - M. Primicerio, General free-boundary problems for the heat equation, I, J. Math. Anal. Appl., 57, no. 3 (1977). Zbl0348.35047MR487016

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.