A Stefan problem for the heat equation subject to an integral condition
Elena Comparini; Domingo A. Tarzia
Rendiconti del Seminario Matematico della Università di Padova (1985)
- Volume: 73, page 119-136
- ISSN: 0041-8994
Access Full Article
topHow to cite
topComparini, Elena, and Tarzia, Domingo A.. "A Stefan problem for the heat equation subject to an integral condition." Rendiconti del Seminario Matematico della Università di Padova 73 (1985): 119-136. <http://eudml.org/doc/107971>.
@article{Comparini1985,
author = {Comparini, Elena, Tarzia, Domingo A.},
journal = {Rendiconti del Seminario Matematico della Università di Padova},
keywords = {stability; Stefan problem; nonlinear integral equation; unique solution; contraction},
language = {eng},
pages = {119-136},
publisher = {Seminario Matematico of the University of Padua},
title = {A Stefan problem for the heat equation subject to an integral condition},
url = {http://eudml.org/doc/107971},
volume = {73},
year = {1985},
}
TY - JOUR
AU - Comparini, Elena
AU - Tarzia, Domingo A.
TI - A Stefan problem for the heat equation subject to an integral condition
JO - Rendiconti del Seminario Matematico della Università di Padova
PY - 1985
PB - Seminario Matematico of the University of Padua
VL - 73
SP - 119
EP - 136
LA - eng
KW - stability; Stefan problem; nonlinear integral equation; unique solution; contraction
UR - http://eudml.org/doc/107971
ER -
References
top- [1] J.R. Cannon, The solution of the Heat Equation Subject to the Specification of Energy, Quart. Appl. Math., 21 (1963). Zbl0173.38404MR160437
- [2] N.I. Ionkin, Solution of a boundary value problem in heat conduction with a nonclassical boundary condition, Diff. Equation s, 13 (1977). Zbl0403.35043MR603291
- [3] J.R. Cannon - J. Van Der Hoek, The one phase Stefan Problem subject to the Specification of Energy, Jour. of Math. Anal. and Appl., 86 (1982). Zbl0508.35074MR649871
- [4] A. Friedmann, Free Boundary Problems for Parabolic Equations, I: Melting of Solids, Journal of Math. and Mec., 8, no. 4 (1959). Zbl0089.07801MR144078
- [5] B. Sherman, A. FreeBoundary Problem for the heat equation with prescribed flux at both fixed face and melting interface, Quart. Appl. Math., 25 (1967). Zbl0158.11904MR213104
- [6] J.R. Cannon - J. Van Der Hoek, The existence of and a continuous dependence result for the solution of the heat equation subject to the specification of energy, Suppl. B.U.M.I., 1 (1981). Zbl0538.35038MR641765
- [7] D.G. Schaefer, A new proof of the infinite differentiability of the Free Boundary in the Stefan Problem, Jour. ofDiff. Eq., 20 (1976). Zbl0314.35044MR390499
- [8] A. Fasano - M. Primicerio, Cauchy type free boundary problems for nonlinear parabolic equations, Riv. Mat. Univ. Parma, (4), 5 (1979). Zbl0699.35148MR584232
- [9] B. Sherman, Continuous Dependence and DifferentiabilityProperties of the Solution of a Free Boundary Problem for the Heat Equation, Quart. Appl. Math., 27 (1970). Zbl0191.39501MR509051
- [10] A. Fasano - M. Primicerio, La diffusione del calore in uno strato di spessore variabile in presenza di scambi termici non lineari con l'ambiente, I, Rend. Sem. Mat. Univ. Padova, 50 (1973). Zbl0278.35046MR366241
- [11] O.A. Ladyzenskaja - V.A. Solonnikov - N.N. Ural'ceva, Linear and quasilinear equations of Parabolic Type, A.M.S. Tranl., 23 (1968). MR241822
- [12] A. Fasano - M. Primicerio, Free Boundary Problems for Nonlinear Parabolic Equations with Nonlinear Free Boundary Conditions, J. Math. Anal. Appl., 72 (1979). Zbl0421.35080MR552335
- [13] A. Friedmann, Partial Differential Equation of Parabolic Type, Prentice Hall, Englewood Cliffs, N.J. (1964). Zbl0144.34903
- [14] E. Comparini - R. Ricci - D.A. Tarzia, Remarks on a one-dimensional Stefan problem related to the diffusion-consumption model, to appear on Z.A.M.M. Zbl0558.76092MR778023
- [15] A. Fasano - M. Primicerio, General free-boundary problems for the heat equation, I, J. Math. Anal. Appl., 57, no. 3 (1977). Zbl0348.35047MR487016
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.