An Ω + -estimate for the number of lattice points in a sphere

Werner Georg Nowak

Rendiconti del Seminario Matematico della Università di Padova (1985)

  • Volume: 73, page 31-40
  • ISSN: 0041-8994

How to cite

top

Nowak, Werner Georg. "An $\Omega _+$-estimate for the number of lattice points in a sphere." Rendiconti del Seminario Matematico della Università di Padova 73 (1985): 31-40. <http://eudml.org/doc/107986>.

@article{Nowak1985,
author = {Nowak, Werner Georg},
journal = {Rendiconti del Seminario Matematico della Università di Padova},
keywords = {omega-estimate; number of lattice points in sphere; lattice remainder; sum of three squares},
language = {eng},
pages = {31-40},
publisher = {Seminario Matematico of the University of Padua},
title = {An $\Omega _+$-estimate for the number of lattice points in a sphere},
url = {http://eudml.org/doc/107986},
volume = {73},
year = {1985},
}

TY - JOUR
AU - Nowak, Werner Georg
TI - An $\Omega _+$-estimate for the number of lattice points in a sphere
JO - Rendiconti del Seminario Matematico della Università di Padova
PY - 1985
PB - Seminario Matematico of the University of Padua
VL - 73
SP - 31
EP - 40
LA - eng
KW - omega-estimate; number of lattice points in sphere; lattice remainder; sum of three squares
UR - http://eudml.org/doc/107986
ER -

References

top
  1. [1] P.T. Bateman, On the representation of a number as the sum of three squares, Trans. Amer. Math. Soc., 71 (1951), pp. 70-101. Zbl0043.04603MR42438
  2. [2] B.C. Berndt, On the average order of a class of arithmetical functions I, II, J. Number Theory, 3 (1971), pp. 184-203 and 288-305. Zbl0219.10050MR284409
  3. [3] K. Chandrasekharan - R. Narasimhan, Hecke's functional equation and the average order of arithmetical functions, Acta Arith., 6 (1961), pp. 487-503. Zbl0101.03703MR126423
  4. [4] J.R. Chen, The lattice points in a circle, Chin. Math., 4 (1963), pp. 322-339. Zbl0147.03302MR184912
  5. [5] K. Corrádi - I. Kátai, A comment on K. S. Gangadharan's paper entitled « Two classical lattice point problems» (in Hungarian), Magyar. Tud. Akad. Mat. Fiz. Oszt. Közl., 17 (1967), pp. 89-97. Zbl0163.04103MR215800
  6. [6] F. Fricker, Einführung in die Gitterpunktlehre, Basel, Boston, Suttgart: Birkhäuser, 1982. Zbl0489.10001MR673938
  7. [7] K.S. Gangadharan, Two classical lattice point problems, Proc. Cambridge, 57 (1961), pp. 699-721. Zbl0100.03901MR130225
  8. [8] J.L. Hafner, On the average order of a class of arithmetical functions, J. Number Theory, 15 (1982), pp. 36-76. Zbl0495.10027MR666348
  9. [9] G.H. Hardy, On the expression of a number as the sum of two squares, Quart. J. Math., 46 (1915), pp. 263-283. Zbl45.1253.01JFM45.1253.01
  10. [10] S. Kanemitsu, Some results in the divisor problems, to appear. Zbl1294.05091
  11. [11] E. Landau, Elementary number theory, 2nd ed., New York, Chelsea Publ. Co., 1955. Zbl0079.06201MR92794
  12. [12] D. Redmond, Omega theorems for a class of Dirichlet series, Rocky Mt. J. Math., 9 (1979), pp. 733-748. Zbl0388.10027MR560250
  13. [13] G. Szegö, Beiträge zur Theorie der Laguerreschen Polynome, II: Zahlentheoretische Anwendungen, Math. Z., 25 (1926), pp. 388-404. Zbl52.0175.03MR1544819JFM52.0175.03
  14. [14] 1 M. Vinogradov, On the number of lattice points in a sphere (in Russian), Izv. Akad. Nauk. SSSR Ser. Mat., 27 (1963), pp. 957-968. Zbl0116.03901MR156821
  15. [15] I.M. Vinogradov, Special variants of the method of trigonometric sums (in Russian), Moscow, Nauka, 1976. Zbl0429.10023MR469878

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.