Sulla risoluzione asintotica dell’equazione y ' = A ( t ) y , con A ( t ) matrice 2 × 2 , nel caso oscillante

Anna Maria Bresquar

Rendiconti del Seminario Matematico della Università di Padova (1985)

  • Volume: 74, page 175-204
  • ISSN: 0041-8994

How to cite

top

Bresquar, Anna Maria. "Sulla risoluzione asintotica dell’equazione $y^{\prime }=A(t) y$, con $A(t)$ matrice $2 \times 2$, nel caso oscillante." Rendiconti del Seminario Matematico della Università di Padova 74 (1985): 175-204. <http://eudml.org/doc/108001>.

@article{Bresquar1985,
author = {Bresquar, Anna Maria},
journal = {Rendiconti del Seminario Matematico della Università di Padova},
keywords = {linear homogeneous system; oscillatory solutions; numerical bounds of the error},
language = {ita},
pages = {175-204},
publisher = {Seminario Matematico of the University of Padua},
title = {Sulla risoluzione asintotica dell’equazione $y^\{\prime \}=A(t) y$, con $A(t)$ matrice $2 \times 2$, nel caso oscillante},
url = {http://eudml.org/doc/108001},
volume = {74},
year = {1985},
}

TY - JOUR
AU - Bresquar, Anna Maria
TI - Sulla risoluzione asintotica dell’equazione $y^{\prime }=A(t) y$, con $A(t)$ matrice $2 \times 2$, nel caso oscillante
JO - Rendiconti del Seminario Matematico della Università di Padova
PY - 1985
PB - Seminario Matematico of the University of Padua
VL - 74
SP - 175
EP - 204
LA - ita
KW - linear homogeneous system; oscillatory solutions; numerical bounds of the error
UR - http://eudml.org/doc/108001
ER -

References

top
  1. [1] G. Birkhoff - L. KOTIN, Autonomous families of differential systems, J. Math. Anal. Appl., 55 (1976), no. 2, pp. 466-475. Zbl0342.34031MR499435
  2. [2] Yu. S. Bogdanov, Asymptotically equivalent linear differential systems, Differentsial'nye Uravneniya, 1 (1965), pp. 707-716. Zbl0155.41002MR199481
  3. [3] F. Brauer, Asymptotic equivalence and asymptotic behaviour of linear systems, Michigan Math. J., 9 (1962), pp. 33-43. Zbl0111.08603MR133498
  4. [4] F. Brauer - J.S.W. Wong, On asymptotic behavior of perturbed linear systems, J. Differential Equations, 6 (1969), pp. 142-153. Zbl0201.11703MR239213
  5. [5] F. Brauer - J.S.W. Wong, On the asymptotic relationships between solutions of two systems of ordinary differential equations, J. Differential Equations, 6 (1969), pp. 527-543. Zbl0185.16601MR252765
  6. [6] L. Cesari, Asymptotic behavior and stability problems in ordinary differential equations, Springer, Berlin, 1963. Zbl0111.08701
  7. [7] R. Conti, Sulla stabilità dei sistemi di equazioni differenziali lineari, Riv. Mat. Univ. Parma, 6 (1955), pp. 3-35. Zbl0067.31402MR76953
  8. [8] R. Conti, Equazioni differenziali lineari asintoticamente equivalenti a x = 0, Riv. Mat. Univ. Parma, (4) 5 (1979), pp. 847-853. 
  9. [9] W.A. Coppel, Stability and asymptotic behavior of differential equations, Heath, Boston, 1965. Zbl0154.09301MR190463
  10. [10] T. Haigh, Linearization and asymptotic behavior, Math. Systems Theory, 9 (1975), no. 1, pp. 18-29. Zbl0304.34039MR387739
  11. [11] U. Kirchgraber, Error estimation for perturbed systems, J. Reine Angew. Math., 288 (1976), pp. 202-206. Zbl0337.34044MR425272
  12. [12] N. Levinson, The asymptotic behavior of a system of linear differential equations, Amer. J. Math., 68 (1946), pp. 1-6. Zbl0061.19706MR15181
  13. [13] G.A. Los', Sufficient conditions for the stability of solutions of a linear differential system of second order, English translation Ukrainian Math. J., 32 (1980), pp. 268-273 (1981). Zbl0469.34039MR578482
  14. [14] S.A. Mazanik, Asymptotically equivalent two dimensional linear differential systems, English translation Diff. Eq., 17 (1981), no. 2, pp. 149-153. Zbl0505.34045MR606811
  15. [15] S.A. Mazanik, Construction of asymptotically equivalent differential systems with piecewise constant matrices, Dokl. Akad. Nauk BSSR, 25 (1981), no. 5, pp. 399-401. Zbl0457.34047MR616528
  16. [16] L.C. Piccinini - G. Stampacchia - G. Vidossich, Equazioni differenziali ordinarie in Rn, Liguori, Napoli, 1978. 
  17. [17] J. Radzikowski, Propriétés asymptotiques des solutions d'un système de deux équations différentielles linéaires homogènes du premier ordre, Demonstratio Math., 11 (1978), no. 1, pp. 83-103. Zbl0412.34055MR499883
  18. [18] W.T. Reid, Sturmian theory for ordinary differential equations, Springer, New York, 1980. Zbl0459.34001MR606199
  19. [19] A. Wintner, Linear variation of constants, Amer. J. Math., 68 (1946), pp. 185-213. Zbl0063.08291MR16813

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.