Sulla risoluzione asintotica dell’equazione , con matrice , nel caso oscillante
Rendiconti del Seminario Matematico della Università di Padova (1985)
- Volume: 74, page 175-204
- ISSN: 0041-8994
Access Full Article
topHow to cite
topBresquar, Anna Maria. "Sulla risoluzione asintotica dell’equazione $y^{\prime }=A(t) y$, con $A(t)$ matrice $2 \times 2$, nel caso oscillante." Rendiconti del Seminario Matematico della Università di Padova 74 (1985): 175-204. <http://eudml.org/doc/108001>.
@article{Bresquar1985,
author = {Bresquar, Anna Maria},
journal = {Rendiconti del Seminario Matematico della Università di Padova},
keywords = {linear homogeneous system; oscillatory solutions; numerical bounds of the error},
language = {ita},
pages = {175-204},
publisher = {Seminario Matematico of the University of Padua},
title = {Sulla risoluzione asintotica dell’equazione $y^\{\prime \}=A(t) y$, con $A(t)$ matrice $2 \times 2$, nel caso oscillante},
url = {http://eudml.org/doc/108001},
volume = {74},
year = {1985},
}
TY - JOUR
AU - Bresquar, Anna Maria
TI - Sulla risoluzione asintotica dell’equazione $y^{\prime }=A(t) y$, con $A(t)$ matrice $2 \times 2$, nel caso oscillante
JO - Rendiconti del Seminario Matematico della Università di Padova
PY - 1985
PB - Seminario Matematico of the University of Padua
VL - 74
SP - 175
EP - 204
LA - ita
KW - linear homogeneous system; oscillatory solutions; numerical bounds of the error
UR - http://eudml.org/doc/108001
ER -
References
top- [1] G. Birkhoff - L. KOTIN, Autonomous families of differential systems, J. Math. Anal. Appl., 55 (1976), no. 2, pp. 466-475. Zbl0342.34031MR499435
- [2] Yu. S. Bogdanov, Asymptotically equivalent linear differential systems, Differentsial'nye Uravneniya, 1 (1965), pp. 707-716. Zbl0155.41002MR199481
- [3] F. Brauer, Asymptotic equivalence and asymptotic behaviour of linear systems, Michigan Math. J., 9 (1962), pp. 33-43. Zbl0111.08603MR133498
- [4] F. Brauer - J.S.W. Wong, On asymptotic behavior of perturbed linear systems, J. Differential Equations, 6 (1969), pp. 142-153. Zbl0201.11703MR239213
- [5] F. Brauer - J.S.W. Wong, On the asymptotic relationships between solutions of two systems of ordinary differential equations, J. Differential Equations, 6 (1969), pp. 527-543. Zbl0185.16601MR252765
- [6] L. Cesari, Asymptotic behavior and stability problems in ordinary differential equations, Springer, Berlin, 1963. Zbl0111.08701
- [7] R. Conti, Sulla stabilità dei sistemi di equazioni differenziali lineari, Riv. Mat. Univ. Parma, 6 (1955), pp. 3-35. Zbl0067.31402MR76953
- [8] R. Conti, Equazioni differenziali lineari asintoticamente equivalenti a x = 0, Riv. Mat. Univ. Parma, (4) 5 (1979), pp. 847-853.
- [9] W.A. Coppel, Stability and asymptotic behavior of differential equations, Heath, Boston, 1965. Zbl0154.09301MR190463
- [10] T. Haigh, Linearization and asymptotic behavior, Math. Systems Theory, 9 (1975), no. 1, pp. 18-29. Zbl0304.34039MR387739
- [11] U. Kirchgraber, Error estimation for perturbed systems, J. Reine Angew. Math., 288 (1976), pp. 202-206. Zbl0337.34044MR425272
- [12] N. Levinson, The asymptotic behavior of a system of linear differential equations, Amer. J. Math., 68 (1946), pp. 1-6. Zbl0061.19706MR15181
- [13] G.A. Los', Sufficient conditions for the stability of solutions of a linear differential system of second order, English translation Ukrainian Math. J., 32 (1980), pp. 268-273 (1981). Zbl0469.34039MR578482
- [14] S.A. Mazanik, Asymptotically equivalent two dimensional linear differential systems, English translation Diff. Eq., 17 (1981), no. 2, pp. 149-153. Zbl0505.34045MR606811
- [15] S.A. Mazanik, Construction of asymptotically equivalent differential systems with piecewise constant matrices, Dokl. Akad. Nauk BSSR, 25 (1981), no. 5, pp. 399-401. Zbl0457.34047MR616528
- [16] L.C. Piccinini - G. Stampacchia - G. Vidossich, Equazioni differenziali ordinarie in Rn, Liguori, Napoli, 1978.
- [17] J. Radzikowski, Propriétés asymptotiques des solutions d'un système de deux équations différentielles linéaires homogènes du premier ordre, Demonstratio Math., 11 (1978), no. 1, pp. 83-103. Zbl0412.34055MR499883
- [18] W.T. Reid, Sturmian theory for ordinary differential equations, Springer, New York, 1980. Zbl0459.34001MR606199
- [19] A. Wintner, Linear variation of constants, Amer. J. Math., 68 (1946), pp. 185-213. Zbl0063.08291MR16813
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.